
Control of Single and Multiple Thrust Propelled Systems
with Applications to Attitude Synchronization

PEDRO MIGUEL ÓTÃO PEREIRA

Licentiate Thesis
Stockholm, Sweden 2016

TRITA-EE 2016:115
ISSN 1653-5146
ISBN 978-91-7729-066-7

KTH School of Electrical Engineering
Automatic Control Lab

SE-100 44 Stockholm
SWEDEN

Akademisk avhandling som med tillst̊and av Kungliga Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie licenciatexamen i reglerteknik
fredagen den 25 november 2016 klockan 14.00 i sal V3 Kungliga Tekniska högskolan,
Teknikringen 72, KTH, Stockholm.

© Pedro Miguel Ótão Pereira, November 2016. All rights reserved.

Tryck: Universitetsservice US AB

Abstract

Control of aerial vehicles is an active topic of research, with many practical
applications, such as the inspection and maintenance of aging infrastructures. Control
of multi-agent systems is another active topic of research, where agents are required
to accomplish some common goal. This thesis contributions lie in the scope of the
previous topics, and they were particularly inspired and influenced by the application
scenarios addressed by the AEROWORKS european research project, whose main
goal is to deploy multiple heterogeneous unmanned aerial vehicles in environments
where human intervention is restricted.

In the first part of the thesis, we consider a so-called thrust-propelled system, for
which we develop a stabilizing controller by means of nonlinear control techniques.
By transforming real physical systems into the form of the thrust-propelled system,
we are able to leverage the previous controller to solve multiple position tracking
problems. The list of those physical systems, studied in this thesis, includes a
quadrotor system; a slung-load system, composed of a load and either one or two
aerial vehicles, attached to the load by a cable; and a system composed of an
aerial vehicle and a rigid manipulator. Experiments and simulations illustrate the
performance of the proposed control strategies.

In the second part of the thesis, we consider a multi-agent system composed
of either unit vectors or rotation matrices, and we design controllers that guar-
antee asymptotic synchronization. We refer to synchronization of unit vectors as
incomplete synchronization, and to synchronization of rotation matrices as complete
synchronization, where neither problem is a subcase of the other. We develop decen-
tralized output feedback controllers for the agents, firstly for their angular velocity,
and, in a second stage, for their torque. For the case of incomplete synchronization,
and when the unit vectors to be synchronized are principal axes, we are able to
propose torque control laws that do not require torque input in all bodies directions,
but rather only in the body directions orthogonal to the respective principal axis.
Several simulations are presented which illustrate the performance of the proposed
control strategies.

Acknowledgements

I would like to thank my family and friends, and hope they forgive me for my
negligent companionship in the last years.

Pedro Pereira
Stockholm, November 2016.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline and Contributions . 2
1.3 Notation . 5

2 Thrust propelled systems 13
2.1 Background . 14
2.2 Control of the thrust-propelled system 16
2.3 Controller for a quadrotor . 28
2.4 Controller for load lifting by a quadrotor 32
2.5 Load lifting stability under attitude control delay 38
2.6 Decoupled design of controllers for aerial manipulation 48
2.7 Controller for load lifting by two quadrotors 57

3 Attitude Synchronization 69
3.1 Background . 70
3.2 Preliminaries . 72
3.3 A common framework for attitude synchronization 76
3.4 Controllers for attitude synchronization on the sphere 97

4 Summary and future research directions 119

Bibliography 123

v

Chapter 1

Introduction

1.1 Motivation

This thesis contributions lie in the scope of control of aerial vehicles and of multi-agent
systems. In particular, the work developed was inspired by the application scenarios
proposed and addressed by the AEROWORKS european research project [1]. The
project’s main goal is to deploy multiple heterogeneous unmanned aerial vehicles in
environments where human intervention is restricted, forbidden, costly or dangerous,
and as illustrated in Fig. 1.1. The application scenarios range from the inspection to
maintenance of aging infrastructures in developing-and-developed countries. With
an automated fleet of aerial vehicles, it is possible to inspect difficult-to-access
infrastructures and to detect anomalies that such structures incur during their life
span. One of the core ideas of the project is to deploy such a fleet in a decentralized
manner, where each vehicle interacts and plans its future actions in cooperation with
a subset of the whole fleet. The deployment of such a team of vehicles is expected
to reduce the costs of inspection and repair tasks, and, more importantly, to remove
humans from intervening in dangerous environments.

(a) Removing humans
from dangerous environ-
ments by performing aerial
automated inspection.

(b) An automated fleet of
aerial vehicles performing
inspection and repair tasks
on a wind mill.

(c) Cooperation between
aerial vehicles when trans-
porting a corona ring from
an electrical pole.

Figure 1.1: AEROWORKS application scenarios that inspired some of the thesis
contributions.

1

2 Introduction

Drones, and in particular quadrotor drones, have been used for performing
several different tasks, owing to their high maneuverability, low maintenance costs,
low mechanical complexity and, most importantly of all, their ability to hover and to
take-off and land vertically. For example, unmanned aerial vehicles (UAVs) have been
used to detect methane, a greenhouse gas that is colorless, odorless, and explosive
when its percentage on air exceeds 15%. By combining a laser-based methane
detector on the UAV moving on a circular trajectory around a methane leak, it is
possible to deduce the leak rate and narrow down the leak location [2]. Drones have
also been used to inspect equipment integrity and to assess damaged components on
steam boilers, where the manual inspection takes usually between three to four days
and is done by technicians hanging from ropes, while the UAV inspection takes only
one day [3]. Another popular application is to use UAVs to monitor and manage large
landscapes. In particular, UAVs have been used to assess the immediate damage
after wildfires and to keep track of vegetation regrowth afterwards [4]. In contrast,
a crew of biologists would take weeks to complete the data collection of damaged
areas [4]; together with monitoring the biodiversity restoration, such tasks amount
to considerable monetary costs. Quadrotor UAVs have also been tested for the
purposes of delivery of essential medical samples after natural disasters [5]. In these
scenarios, roads may suffer from service disruptions, due to, for example, floods or
traffic congestion; and aerial transportation of medical samples or other immediate
necessities, such as potable water, consists of a fast means of assisting people in
need. UAVs have been used in many other application scenarios, and the previous
list is a small but representative subset of the practical applications of which UAVs
are an essential component. Despite these several contributions, many problems, of
practical and theoretical importance, remain unsolved, and this thesis contributions,
specified in the next subsection, aim at adding and solidifying the contributions in
this field of aerial vehicles.

1.2 Outline and Contributions

The thesis is divided in two main parts, corresponding to Chapters 2 and 3. In the
first, we develop controllers for thrust-propelled systems, while in the second, we
study synchronization of unit vectors and of rotation matrices. Pictorial illustrations
of these two problems are presented in Fig. 1.2. In this section, we explain the
outline of the thesis and list the contributions of each chapter and sections therein.

Chapter 2

In this chapter, the vector field of a thrust-propelled system is presented and
described, and a control law is constructed, which steers the system’s position to
the origin. In addition, several examples of systems whose open-loop vector field
is equivalent to that of the thrust-propelled system are provided, for which the
previous control may be used. We start with a literature review on control of aerial
vehicles in Section 2.1. The following sections are described next, in more detail.

1.2. Outline and Contributions 3

Section 2.2

In this section, we describe the abstract notion of a thrust-propelled system, and
propose a control law, which is constructed by means of a backstepping procedure,
that steers the position of the thrust-propelled system to the origin. These results
are based on

• Pereira, P. and Dimarogonas, D.V. Lyapunov-based Generic Controller De-
sign for Thrust-Propelled Underactuated Systems. IEEE European Control
Conference, pp. 594–599, 2016.

In the subsequent sections, we consider different physical systems, and we show
that the thrust-propelled vector field is equivalent to that of each physical system,
completely or partially. As such, via proper state and input transformations, the
proposed control law, referred to before, may be used to control those physical
systems.

Section 2.3

In this section, we consider, as a first example, the quadrotor dynamics, which we
transform into the thrust-propelled dynamics. This first example also provides some
intuition on the physical interpretation of the state of a thrust-propelled system.

TPS Input

Physical Physical

TPS State
TPS Controller

Input
Transformation

State
Transformation

Input State

TPS = Thrust Propelled System

Physical System

(a) In Chapter 2, we develop controllers for thrust-propelled systems.

n1 ∈ S
2

nN ∈ S
2ni ∈ S

2

ni: cable i direction/unit vector

⋱
⋰

(b) In Chapter 3, we study synchronization of unit vectors and of rotation matrices.
Figure 1.2: This thesis is divided in two main parts.

4 Introduction

Section 2.4

In this section, we consider a load and a quadrotor attached to each other by a cable
of fixed length. After modeling the system, we transform it into the thrust-propelled
form, and apply the previously mentioned controller. We also design a disturbance
estimator that asymptotically removes a constant thrust input disturbance acting
on the quadrotor. The results presented in this section are based on

• Pereira, P. and Herzog, M. and Dimarogonas, D. V. Slung Load Transportation
with Single Aerial Vehicle and Disturbance Removal. IEEE Mediterranean
Conference on Control and Automation, pp. 671–676, 2016.

Section 2.5

In this section, we consider again the system composed of a load and a quadrotor
attached to each other by a cable of fixed length. We propose a controller that is
easier to tune in an experimental setup and that provides an initial guess for other
controllers gains. We also study the effect of the attitude inner-loop on the stability
of the equilibrium, and find a tight upper bound on that delay for which asymptotic
stability of the equilibrium is preserved. These section results are based on

• Pereira, P. and and Dimarogonas, D. V. Stability of Load Lifting by a Quadrotor
under Attitude Control Delay. IEEE International Conference on Robotics and
Automation, 2017 (submitted).

Section 2.6

In this section, we consider a system composed of a rigid manipulator and a quadrotor
attached to each other by a ball joint. We transform the system into the thrust-
propelled form by considering the dynamics of the center of mass of the whole
system. The results presented in this section are based on

• Pereira, P. and Zanella, R. and Dimarogonas, D.V. Decoupled Design of
Controllers for Aerial Manipulation with Quadrotors. IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4849–4855, 2016.

Section 2.7

In this section, we consider a system composed of a load and two quadrotors, with
the load and each quadrotor attached to each other by a cable of fixed length. After
transforming the system into the thrust-propelled form, we are left with two degrees
of freedom, namely, the angle between the cables and the rotation of the plane that
contains both cables around a chosen axis. These section results are based on

• Pereira, P. and Dimarogonas, D.V.Control Framework for Slung Load Trans-
portation with Two Aerial Vehicles. American Control Conference, 2017 (sub-
mitted).

1.3. Notation 5

Chapter 3

In this chapter, we consider the problem of attitude synchronization among a group
of agents in the group of unit vectors, or a group of agents in the group of rotation
matrices. We start with a literature review on attitude synchronization in Section 3.1,
and layout some preliminary concepts in Section 3.2. The following sections are
described next, in more detail.

Section 3.3

In this section, we consider agents controlled at the angular velocity level (similar
to first-order integrators) and where the network graph is allowed to change in time.
By transforming the problems of synchronization on the group of unit vectors and
of synchronization on the group of rotation matrices into a common form, we are
able to study synchronization under a common framework. Moreover, asymptotic
synchronization is guaranteed for a large set of initial conditions. The results
presented in this section are based on

• Pereira, P. and Dimitris, B. and Dimarogonas, D.V. A Common Framework for
Attitude Synchronization of Unit Vectors in Networks with Switching Topology.
55th IEEE Conference on Decision and Control, 2016 (to appear).

Section 3.4

In contrast with Section 3.3, in this section, we consider agents in the group of unit
vectors controlled at the torque level (similar to second-order integrators), under a
static network graph. We propose constrained torque control laws, which do not
require torque on the space orthogonal to the unit vector each agent is supposed to
synchronize. The results presented in this section are based on

• Pereira, P. and Dimarogonas, D.V. Family of controllers for attitude synchro-
nization in S2. 54th IEEE Conference on Decision and Control, pp. 6761–6766,
2015; and,

• Pereira, P. and Dimarogonas, D.V. Family of controllers for attitude synchro-
nization on the sphere. Automatica (accepted for publication).

1.3 Notation

In this section, we present the notation that is used in both chapters and sections
therein. Notation specific to a section is presented at the begining of the respective
section.

Definition 1.3.1. Let Ω1 and Ω2 be manifolds of any dimension. Given k ∈ N0 and
a function f ∶ Ω1 ↦ Ω2, we say f is of class Ck, or equivalently f ∈ Ck(Ω1,Ω2), if all
its partial derivatives, up to order k inclusive, are continuous in Ω1.

6 Introduction

Definition 1.3.2. Let n, p,m ∈ N. Let also x ∶= (x1,⋯, xn) ∈ Rn, and denote, for
i ∈ {1,⋯, n}, x∣i ∶= (x1,⋯, xi−1, xi+1,⋯, xn) ∈ Rn−1. Then, given f ∶= (f1,⋯, fp) ∈
C1(Rn,Rp), we define, for all i ∈ {1,⋯, n} and j ∈ {1,⋯, p},

gx∣i,j
∶ R ∋ x̃i ↦ gx∣i,j

(x̃i) ∶= fj(x1,⋯, x̃i,⋯, xn) ∈ R

and denote

df ∶ Rn ∋ (x1,⋯, xn) =∶ x ↦ df(x) ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

g′x∣1,1
(x1) ⋯ g′x∣n,1

(xn)
⋮ ⋱ ⋮

g′x∣1,p
(x1) ⋯ g′x∣n,p

(xn)

⎤⎥⎥⎥⎥⎥⎥⎦

∈ Rp×n.

Also, given n1, n2, n3 ∈ N such that n1 + n2 + n3 = n ∧ n2 ≠ 0, we denote, given
(x1,x2,x3) ∈ Rn1 ×Rn2 ×Rn3 ,

∂zf(x1,z,x3)∣z=x2 ∶= dg(x1,x3)(x2) ∈ Rp×n,with
g(x1,x3) ∶ Rn2 ∋ x̃2 ↦ g(x1,x3)(x̃2) ∶= f(x1, x̃2,x3) ∈ Rp,

where we emphasize that z is just a dummy variable, that serves only the purpose of
indicating the position of the argument w.r.t. which the differentiation is taken.

Let I ⊆ R be nonempty and open, and Ωx and Ux be manifolds. Consider then a
trajectory x ∈ C1(I,Ωx) and a control input ux ∈ C(I,Ux). If ẋ(t) = fx(t,x(t),ux(t))
for all t ∈ I and for some fx ∶ I × Ωx × Ux ∋ (t,x,ux) ↦ fx(t,x,ux) ∈ TxΩx, we
call fx the open-loop vector field. If u(t) = uclx (t,x(t)) for all t ∈ I and for some
uclx ∈ C(I ×Ωx,Ux), we call uclx the control law and f clx ∶ I ×Ωx ∋ (t,x) ↦ f clx (t,x) ∶=
fx(t,x,uclx (t,x)) ∈ TxΩx the closed-loop vector field. We say (the open-loop vector
field) fy ∶ I ×Ωy × Uy ∋ (t,y,uy)↦ fy(t,y,uy) ∈ TyΩy is equivalent to (the open-loop
vector field) fx ∶ I × Ωx × Ux ∋ (t,x,ux) ↦ fx(t,x,ux) ∈ TxΩx if, for every t ∈ I,
there exits a diffeomorphism gyx(t, ⋅) ∶ Ωx ↦ Ωy (denote gxy(t, ⋅) ∶= (gyx(t, ⋅))−1) and a
function uclx ∶ I ×Ωy × Uy ↦ Ux such that, for all (t,y,uy) ∈ I ×Ωy × Uy,

fy(t,y,uy) ∶= (∂t̄gyx(t̄,x)∣t̄=t + ∂x̄gyx(t, x̄)∣x̄=xfx(t,x,ux)) ∣x=gxy(t,y),ux=uclx (t,y,uy). (1.3.1)

Example 1.3.1. Consider the manifolds Ωn ∶= S2/{n ∈ S2 ∶ eT1 n > 0} and
Ωθ ∶= (−π2 ,

π
2)

2, Un = R3 and Uθ = R2, and the vector fields

R ×Ωn × Un ∋ (t,n,ω)↦ fn(t,n,ω) ∶= S (ω)n ∈ TnΩn ∶= {δn ∈ R3 ∶ δnTn = 0},
R ×Ωθ × Uθ ∋ (t,θ,ωθ)↦ fθ(t,θ,ωθ) ∶= ωθ ∈ TθΩθ ∶= R2.

Consider also (let θ = (ψ, θ))

R ×Ωθ × Uθ ∋ (t,θ,ωθ)↦ ωcln (t,θ,ωθ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

cos(θ) sin(θ) cos(ψ) − sin(ψ)
cos(θ) sin(θ) sin(ψ) cos(ψ)

cos2(θ) 0

⎤⎥⎥⎥⎥⎥⎥⎦

ωθ,

1.3. Notation 7

and

R ×Ωn ∋ (t,n)↦ gθn(t,n) ∶= (arctan(eT2 n
eT1 n

) ,arcsin(−eT3 n)) ∈ Ωθ,

R ×Ωθ ∋ (t,θ)↦ gnθ (t,θ) ∶= (c(θ)c(ψ), c(θ)s(ψ),−s(θ)) ∈ Ωn.

It thus follows that fθ is equivalent to fn, since (1.3.1) holds (with (x, y) = (n, θ)).

The formalism introduced in (1.3.1) may seem unnecessary in Example 1.3.1, but it
proves itself useful in the sections to come.

Definition 1.3.3. Let n ∈ N, α ∈ [0, π] and ν ∈ Sn. We define C(α,ν) ∶= {n ∈ Sn ∶
nTν > cos(α)} as the open α cone around ν. Similarly, we define C̄(α,ν) ∶= {n ∈
Sn ∶ nTν ≥ cos(α)} as the closed α-cone around ν.

In Fig. 1.3, we illustrate an open cone for n = 3, α = 30○ and some ν̄ ∈ S2: in
particular, three unit vectors ν1, ν2 and ν3 are shown which belong to C̄(30○, ν̄),
i.e., the closed 30○-cone formed by the unit vector ν̄.

Proposition 1.3.4 (Triangle Inequality). Let n ∈ N, and ν1,ν2,ν ∈ Sn. For θ1,2 =
arccos(νT1 ν2) ∈ [0, π], θ1 = arccos(νT1 ν) ∈ [0, π] and θ2 = arccos(νT2 ν) ∈ [0, π], it
follows that θ1,2 ≤ θ2 + θ2.

Proof. The equality θ1,2 = θ2 + θ2 follows immediately when θ1 = 0 or θ2 = 0, since
ν1 = ν or ν2 = ν, respectively. Assume then that θ1 ≠ 0 ∧ θ2 ≠ 0. Notice that
νi = (νTi ν)ν + Π (ν)νi = cos(θi)ν + sin(θi)ν⊥,i, for i = {1,2} and where ν⊥,i =

Π(ν)νi
∥Π(ν)νi∥ is a unit vector orthogonal to ν (well defined since θi ≠ 0). It then follows
that cos(θ1,2) = νT1 ν2 = cos(θ1) cos(θ2) + sin(θ1) sin(θ2)(ν⊥,1)Tν⊥,2 = cos(θ1 + θ2) +
sin(θ1) sin(θ2)(1 + (ν⊥,1)Tν⊥,2) ≥ cos(θ1 + θ2), and thus the Proposition’s conclusion
follows.

-1

0-1

-0.5

0

0.5

-1

1

1-0.5 0 0.5 1

Figure 1.3: Three unit vectors, ν1, ν2 and ν3, in R3 contained in closed 30○-cone
formed by unit vector ν̄.

8 Introduction

In
th

e
lis

ts
be

lo
w

,l
et
n
∈N

,ε
>

0
an

d
Ω

be
so

m
e

se
t.

V
ar

ia
bl

es

0 n
=
(0
,⋯
,0

)∈
R
n

Ze
ro

ve
ct

or
in

R
n

1 n
=
(1
,⋯
,1

)∈
R
n

Ve
ct

or
of

on
es

in
R
n

I n
∈R

n
×
n

Id
en

tit
y

m
at

rix
∣Ω

∣∈
N

C
ar

di
na

lit
y

of
a

fin
ite

se
t

Ω
A
⊗
B
∈R

m
s
×
n
t

K
ro

ne
ck

er
pr

od
uc

t
be

tw
ee

n
A
∈R

m
×
n

an
d
B
∈R

s
×
t
,f

or
n
,m

,s
,t
∈N

A
1
⊕
⋯
⊕
A
n

Bl
oc

k
di

ag
on

al
m

at
rix

w
ith

bl
oc

k
di

ag
on

al
en

tr
ie

s
A

1
to
A
n

(s
qu

ar
e

m
at

ric
es

of
an

y
di

m
en

sio
ns

)
e 1
,⋯
,e

n
∈R

n
C

an
on

ic
al

ba
sis

ve
ct

or
s

of
R
n

Se
ts

M
3,

3
⊂
R

3×
3
,M̄

3,
3
⊂
R

3×
3

Se
t

of
sy

m
m

et
ric

an
d

an
tis

ym
m

et
ric

m
at

ric
es

,r
es

pe
ct

iv
el

y
Sn

∶=
{x

∈R
n
+
1
∶x

T
x
=

1}
Se

t
of

un
it

ve
ct

or
s

in
R
n
+
1

SO
(3

)⊂
R

3×
3

Se
t

of
th

re
e

di
m

en
sio

na
lr

ot
at

io
n

m
at

ric
es

Ω
ε
∶=

{x
∈R

n
∶∃

z
∈Ω

∶∥
x
−

z∥
<
ε}

O
pe

n
se

t
of

al
lp

oi
nt

s
w

hi
ch

ar
e
ε-

cl
os

e
to

th
e

se
t

Ω
⊆
R
n

B(
ε)

[B̄
(ε

)]
∶=

{x
∈R

n
∶∥

x∥
<
[≤

]ε
}

O
pe

n
[C

lo
se

d]
ba

ll
of

ra
di

us
ε

an
d

ce
nt

er
ed

ar
ou

nd
0

Fu
nc

ti
on

s

S
∶R

3
↦
M̄

3,
3

S
(a

)b
∶=

a
×

b,
fo

r
al

la
,b

∈R
3

(s
ee

(1
.3

.2
))

S−
1
∶M̄

3,
3
→

R
3

X
=
S
(S

−
1
(X

))
an

d
x
=
S−

1
(S

(x
))

fo
r

al
lX

∈M̄
3,

3
,x

∈R
3

(s
ee

(1
.3

.3
))

Π
∶S

n
↦

R
(n
+
1)
×
(n
+
1)

Π
(x

)∶
=

I−
xx

T
,o

rt
ho

go
na

lp
ro

je
ct

io
n

op
er

at
or

on
to

th
e

su
bs

pa
ce

pe
rp

en
di

cu
la

r
to

x
∈S

n

di
st
∶R

n
×

2R
n
↦

R
≥
0

D
ist

an
ce

of
po

in
t

x
∈R

n
to

se
t

Ω
⊆
R
n
,d

ist
(x
,Ω

)∶
=

in
f y

∈Ω
∥x

−
y∥

1.3. Notation 9

The functions, introduced in the previous page, are defined as

S ∶R3 ∋ (x, y, z)↦

⎡⎢⎢⎢⎢⎢⎢⎣

0 −z y

z 0 −x
−y x 0

⎤⎥⎥⎥⎥⎥⎥⎦

∈ M̄3,3, (1.3.2)

S−1 ∶M̄3,3 ∋

⎡⎢⎢⎢⎢⎢⎢⎣

0 −z y

z 0 −x
−y x 0

⎤⎥⎥⎥⎥⎥⎥⎦

↦ (x, y, z) ∈ R3, (1.3.3)

and satisfy the following properties,

(P1) RS (x) = S (Rx)R,∀x ∈ R3,R ∈ SO(3); (1.3.4)
(P2) Π (n) = (S (n))TS (n) = −S (n)S (n) ,∀n ∈ S2; (1.3.5)
(P3) ∥S (n)m∥2 = ∥Π (n)m∥2 = 1 − (nTm)2,∀n,m ∈ S2; (1.3.6)
(P4) RS−1(A −AT) = S−1(RART −RATRT)∀R ∈ SO(3),A ∈ R3×3; (1.3.7)

which we use repeatedly in this thesis.

Definition 1.3.5. (Equilibrium) Let fx be a vector field on a manifold Ωx, i.e.,
fx ∶ R ×Ωx ∋ (t,x)↦ fx(t,x) ∈ TxΩx. We say x⋆ ∈ Ωx is an equilibrium point of fx, if
fx(t,x⋆) = 0 for all t ∈ R.

Definition 1.3.6. (Stability of an equilibrium) Let fx be a vector field on a manifold
Ωx. An equilibrium point x⋆ ∈ Ωx is

• stable if for every (arbitrarily small) neighborhood Ω1 ⊆ Ωx of x⋆ there exists a
neighborhood Ω2 ⊆ Ω1 of x⋆ such that R ∋ t↦ x(t) = x0 + ∫

t

0 fx(τ,x(τ))dτ ∈ Ω1

for any x0 ∈ Ω2.

• attractive if there exists a neighborhood Ω2 ⊆ Ωx of x⋆ such that, for R ∋ t↦
x(t) = x0 + ∫

t

0 fx(τ,x(τ))dτ ∈ Ωx with any x0 ∈ Ω2, it holds that limt→∞ x(t) =
x⋆.

• (locally) asymptotically stable if it is stable and attractive.

• globally asymptotically stable if it is stable and attractive and Ω2 = Ωx.

• unstable (unattractive) if it is not stable (not attractive).

Example 1.3.2. Let k ∈ R3, and consider the manifold S2 and the vector field

fn ∶ S2 ∋ n ↦ fn(n) ∶= S (n) (k − S (n)e1) ∈ TnS2 ∶= {δn ∈ R3 ∶ nT δn = 0}. (1.3.8)

It follows that

10 Introduction

• for k = e3 ∈ R3, n⋆ = −e2 ∈ S2 is attractive and unstable (see Fig. 1.4b);

• for k = ke3 ∈ R3 with k > 1, n⋆ = (0,− 1
k
,±

√
k2−1
k

) ∈ S2 is stable but not
attractive (see Fig. 1.4a);

• for k = 0 ∈ R3, n⋆ = e1 ∈ S2 is asymptotically stable (see Fig. 1.4c);
• for k = 0 ∈ R3, n⋆ = −e1 ∈ S2 is unstable and unattractive (see Fig. 1.4c).

Let us focus only on the last two cases. For this case fn(n) ∶= Π (n)e1 ⇒
eT1 fn(n) = ∥S (n)e1∥2 = 1 − (nTe1)2; and therefore, for V ∶ S2 ∋ n ↦ V (n) ∶=
1−nTe1 ∈ [0, 2], it follows that dV (n)fn(n) = −V (n)(2−V (n)) ≤ 0 for all n ∈ S2.
As such, for R≥0 ∋ t↦ n(t) = n0 + ∫

t

0 fn(x(τ))dτ ∈ S2 with any n0 ∈ S2, it follows
that R≥0 ∋ t↦ V (n(t)) = 2V (n(0))

e2t(V (n(0))−2)+V (n(0)) ∈ [0, 2]. This suffices to infer that
n⋆ = e1 ∈ S2 is asymptotically stable and that n⋆ = −e1 ∈ S2 is unstable and
unattractive. With respect to neighborhoods around the equilibria, the concept
of cone as in Definition 1.3.3 may be used, in which case, it follows from the
previous discussion that, in fact, R≥0 ∋ t↦ n(t) ∈ C̄(arccos(1 − eT1 n0),e1).

Remark 1.3.7. Asymptotic stability of an equilibrium point may be inferred from
several different approaches. Consider the Example 1.3.2 for the case k = 03, and
the asymptotically stable equilibrium n⋆ = e1 ∈ S2.

• A linearization procedure around the equilibrium yields dfn(n⋆) = −Π (e1) (=
−I + e1eT1), and therefore stability cannot be inferred from this linearization
procedure (one zero eigenvalue).

• Consider (let Ωn ∶= S2/{n ∈ S2 ∶ eT1 n > 0} and Ωθ ∶= (−π2 ,
π
2)

2)

gθn ∶ Ωn ∋ n ↦ gθn(n) = (arctan(eT2 n
eT1 n

) ,arcsin(−eT3 n)) ∈ Ωθ,

gnθ ∶ Ωθ ∋ (ψ, θ) =∶ θ ↦ gnθ (θ) ≡ (gθn)−1(θ) ∶= (c(θ)c(ψ), c(θ)s(ψ),−s(θ)) ∈ Ωn.

It follows that, for fθ ∶ Ωθ ∋ θ ↦ fθ(θ) ∶= dgθn(n)fn(n)∣n=gn
θ
(θ) ∈ R2, θ⋆ = 02

is an equilibrium point and it holds that dfθ(θ⋆) = −I2; thus n⋆ = gnθ (θ⋆) is
asymptotically stable.

• Consider fx ∶ R3 ∋ x ↦ fx(x) ∶= fn(x) + 1
2x(1 − xTx) ∈ R3, where we emphasize

that fx(x) = fn(x) for all x ∈ S2. A linearization procedure around the equilib-
rium x⋆ = e1 ∈ S2 yields dfx(x⋆) = −I3, and therefore stability is inferred from
this linearization procedure (in particular, stability of x⋆ w.r.t. fn is inferred).

Definition 1.3.8. (Trajectory tracking) Let fx be a vector field on a manifold Ωx,
i.e., fx ∶ R ×Ωx ∋ (t,x)↦ fx(t,x) ∈ TxΩx, and let x ∶ R≥0 ↦ Ωx be a trajectory. Given
a trajectory x⋆ ∈ C1(R≥0,Ωx) satisfying ẋ⋆(t) = fx(t,x⋆(t)) for all t ∈ R≥0, we say
there is trajectory tracking if x converges to x⋆ as time evolves and for all x(0) in
some neighborhood of x⋆(0). We then call x⋆ an equilibrium trajectory.

1.3. Notation 11

Remark 1.3.9. In Definition 1.3.8, when one says that x converges to x⋆ as time
evolves, one can write limt→∞(x(t) − x⋆(t)) = 0 but with the caveat that the addition
and the additive inverse are defined in Ωx (if not, one must embed the manifold in
some Euclidean space). On this issue, we also refer to the notion of contraction
region as defined in [6].

Proposition 1.3.10. Denote (let R̃3 ∶= R3/{03})

R̃3 ∋ p↦ n(p) ∶= p
∥p∥ , (1.3.9)

R̃3 ×R3 ∋ (p,v)↦ ω(p,v) ∶= S (n(p)) v
∥p∥ , (1.3.10)

R̃3 ×R3 ×R3 ∋ (p,v,a)↦ τ (p,v,a) ∶= S (n(p))(a
∥p∥ − 2 v

∥p∥
vT

∥p∥n(p)) . (1.3.11)

Given p,v,a ∶ R ↦ R3 (with p(t) ≠ 0 for all t ∈ R), satisfying (ṗ(t), v̇(t)) =
(v(t),a(t)) for all t ∈ R, it follows that

ṅ(p(t)) =S (ω(p(t),v(t)))n(p(t)), (1.3.12)
ω̇(p(t),v(t)) =τ (p(t),v(t),a(t)). (1.3.13)

Proof. The proof follows from straightforward calculations. In what follows let
(p,v,a) ∈ (R3)3. First, since

dn(p)v = (I − p
∥p∥

pT

∥p∥)
v

∥p∥ = Π (n(p)) v
∥p∥ = S (ω(p,v))n(p),

it follows that (1.3.12) holds. Secondly, since

∂p̄ω(p̄,v)∣p̄=pv + ∂v̄ω(p, v̄)∣v̄=va =

=S (n(p)) a
∥p∥ − S (v

∥p∥)S (ω(p,v))n(p) − S (n(p)) v
∥p∥

pT

∥p∥
v

∥p∥

=S (n(p)) a
∥p∥ + n(p)vTω(p,v)

∥p∥ −ω(p,v)vTn(p)
∥p∥ − S (n(p)) v

∥p∥
vTn(p)

∥p∥

=S (n(p))(a
∥p∥ − 2 v

∥p∥
vT

∥p∥n(p)) = τ (p,v,a),

it follows that (1.3.13) holds.

12 Introduction

(a) Two stable equilibria, but not attractive.

(b) One attractive equilibrium, but not stable.

(c) Two equilibria, one asymptotically stable (in focus in left) and one unstable and
unattractive (in focus on the right).

Figure 1.4: Stability concepts illustrated for vector field in (1.3.8), for different values
of k ∈ R3. In the figures, the vector field is plotted on the sphere. (Each pair of figures
above is computed for the same value of k, but the same figure is presented from
different perspectives.)

Chapter 2

Thrust propelled systems

In this chapter, the abstract notion of a thrust-propelled system is defined, and
a controller is designed that steers the position of this system to the origin. The
designed controller is a function of a subset of double integrator controllers and, as
such, forms a family of controllers. One major benefit of this design process is the
separation of the controller design steps: one may separately, and with no specific
order, focus attention and design a bounded controller for a double integrator and
a controller for a thrust-propelled system. Afterwards, different physical systems
are, totally or partially, transformed into thrust-propelled systems, and the previous
controller is immediately applicable. For those physical systems that are only partially
transformed into thrust-propelled systems, one or more degrees of freedoms (DoFs)
are left for which controllers must also be designed. The previous description is
illustrated in Fig. 2.1, which pictorially describes the framework explored in this
chapter.

TP Input Physical Physical TP State

TP StateTP Input

TP Controller

TP Controller

Input

Transformation

State

Transformation

TP = Thrust-propelled

Physical System

System

Input State

Controller for

DoF

DoF

Figure 2.1: A physical system is, totally or partially, transformed into a thrust-
propelled system, for which a controller is designed.

13

14 Thrust propelled systems

TP Input
Physical Physical

TP State

TP StateTP Input

TP Controller

Input

Transformation

State

Transformation

TP = Thrust-propelled

Physical System

System

Input State

TP Controller

ucl
x

ucl
z

ux uz zfz gx
z

x

ux x

ucl
x

fx

Figure 2.2: State, open-loop vector field, and input of the thrust-propelled system,
and of a physical system. uclx is the control law for the thrust-propelled system, and
gxz is the mapping between the physical state (z) and the thrust-propelled state (x).

Let us provide some more details on the control design steps. Let x, fx and ux
represent, respectively, the state, the open-loop vector field, and the input to the
thrust-propelled system. Similarly, let z, fz and uz represent, respectively, the state,
the open-loop vector field, and the input to a physical system. In the first section
of this chapter, we design a control law uclx for the thrust-propelled system. In the
following sections, we show that fx is in fact equivalent to fz, i.e., (see the notation
in Section 1.3) we find a diffeomorphism gxz and a function uclz such that, loosely
speaking

x = gxz(t,z)⇒ ẋ = ∂tgxz(t,z) + ∂zgxz(t,z)ż
⇒ fx = (∂tgxz(t,z) + ∂zgxz(t,z)fz) ∣uz=uclz ,z=(gxz (t,⋅))

−1(x). (2.0.1)

As such, the control law uclx may be applied to control the physical system, owing
to the equivalence above. Figure 2.2, illustrates the previous control design ideas.

2.1 Background

For the last decade, a great research effort has been put on executing tasks with
aerial vehicles in complex, unstructured and dynamic environments. Compared to
ground robots, aerial robots allow for manipulation tasks to be executed in difficult
to access spaces, opening the doors to new applications, such as the inspection and
maintenance of aging infrastructures [1]. Multi-rotor helicopters, and in particular
quadrotors, are preferred to others types of UAVs owing to their capability to hover,
to take off and land vertically, to the availability of inexpensive components and to
their high maneuverability [7].

Multi-rotors have been used to perform complex automated tasks [8], including
the construction of infrastructures useful in emergency scenarios [9], and manipu-
lation tasks with grippers, robotic arms and cables [10–15]. Autonomy is usually

2.1. Background 15

achieved with the help of vision [16–18], and stability of control laws may be guar-
anteed even when an extra load is attached to the aerial vehicle [19]. However,
quadrotors and other multi-rotors form a class of under-actuated systems. The
dynamics of an n-dimensional generalized coordinate of an under-actuated system
cannot be reduced to those of n decoupled double integrator systems, which explains
why control of aerial vehicles exhibits specific challenges.

Apart from research on stabilization and on trajectory tracking of quadrotors [8,
20, 21], there is also noteworthy research on using quadrotors to perform specific
tasks [9, 11–13, 17, 19, 22–25], which include, among other examples, coverage,
vision-based navigation, interaction with the environment by means of a mobile
manipulator and construction of three-dimensional structures. In [22], a strategy for
(almost) time-optimal coverage of simple 3D objects by a UAV that is moving with
constant speed is proposed. In [17], quadrotors use onboard cameras in combination
with inertial sensors for navigation, essential in GPS denied environments; it also
describes how to create maps of previously unknown terrains. [12] describes a
controller for a quadrotor with a moving a manipulator in contact with another
object and along the surface of the object. In [19], grasping of objects from the
ground is achieved with a small UAV helicopter that is controlled with a PID
controller. In [11], an adaptive controller that compensates forces exerted between
a manipulator and a quadrotor is proposed. Quadrotors with fixed manipulators
moving a cart on rails is found in [23]. In [13], multiple UAVs, rigidly connected to
different points of a single load, carry that load by means of a sliding mode controller
in combination with a trajectory planner that uses the RRT⋆ algorithm. Quadcopters
building three-dimensional structures consisting of ropes is also demonstrated in [9].

In this chapter, the focus is on two particular systems, namely the slung load
system and a system composed of a rigid manipulator attached to an aerial vehicle.

In a slung load system, an aerial vehicle and a load are attached to each other by
a cable, and the control challenge lies in dampening the sway of the load with respect
to the transporting vehicle. Slung load transportation by aerial vehicles is an under-
actuated problem for which trajectory tracking control strategies are necessary [26].
A model of this system is found in [27], and controllers for position trajectory
tracking of the load are found in the literature [14, 26, 26, 28–32]. Controllers for
helicopters with experimental validation are found in [26, 28], where vision was used
to estimate the state used in the feedback loop. For quadrotors, controllers are found
in [14, 29–33], which explore differential flatness for planning trajectories for the
transporting quadrotors and which mininize sway; or which explore the dynamics
to design controllers based on Lyapunov methods, such as backstepping. Adaptive
strategies that compensate for the presence of unmodeled or unknown parameters,
such as the load’s mass or the cables lengths, are also found [28, 34]. Load lifting
by multiple aerial vehicles has also been studied and is found in [10, 14, 35]. In
particular, in [10], the relations in static equilibrium between three quadrotors
and a load are analyzed. In [14] a controller is designed for three of more vehicles
transporting a rigid body. In [35], a control architecture for deploying cooperative
missions between mutilple UAVs is described and experimentally validated, where

16 Thrust propelled systems

the interactions between UAVs are not only the physical couplings (associated to
the joint transportation of a single load) but also the information exchanges.

A slung load system, despite mechanically simple (only a cable is necessary),
is not adequate in scenarios of constrained manipulation, since the load’s position
relative to the transporting UAV depends on the trajectory the load is required to
track. Different forms of manipulation with aerial vehicles are found in the literature,
and most take advantage of trajectory tracking controllers for quadrotors such as
those found in [20]. One approach to manipulation is by means of a gripper attached
to an aerial vehicle. In [36, 37], a gripper is mounted under a UAV that grasps, holds
and transports an object. Carrying an external load rigidly attached to the UAV
body through a gripper changes the flight characteristics of the aerial vehicle, such
as the inertia of the system, and [37] provides bounds on the controller gains that
guarantee that stability is preserved when a load is gripped. In [38], the problem of
high-speed grasping and transportation of loads is studied, and it draws inspiration
from aerial hunting by birds of prey. In [39], a team of quadrotors are employed to
collaboratively pick up an object using a similar gripper.

An alternative to a gripper is a robotic manipulator with actuated joints, which
provide additional degrees of freedom [40]. Control strategies for UAVs with robotic
manipulators are found that consider the UAV and manipulator as two independent
subsystems, and their coupling is seen as an external disturbance to each other.
In [41, 42], the controller considers the variation of the center of mass position
and of the inertia matrix caused by the manipulator motion. A task-based control
strategy is proposed in [43], where the manipulator tracks the aerial robot attitude
dynamics during all the translational motion. In [24], the manipulator static effects
on the UAV are estimated and compensated through the thrust and torques with a
multilayer architecture control. In [44, 45], the problem of disturbance due to the
manipulator’s presence is handled by adaptation of the control law. In [44], the
problem of disturbance due to the manipulator’s presence is handled by adaptation of
an outer (position) control loop that compensates the external moments introduced
on the airframe, while the manipulator is controlled with an independent joint
control method. In [45], an adaptive controller also considers the manipulator’s
motion in its adaptation, and it is compared with another controller that ignores
the manipulator’s presence.

The focus of this chapter is mainly on the slung load system and on the system
composed of a rigid manipulator attached to an aerial vehicle. Both systems are
transformed into the thrust-propelled system form, which is described in the next
section, and for which a controller is also proposed in the same section.

2.2 Control of the thrust-propelled system

In this section, the vector field of the thrust-propelled system is described and a
controller that steers the system’s position towards the origin is presented. A thrust-
propelled system is composed of a three dimensional position and velocity, and a

2.2. Control of the thrust-propelled system 17

three dimensional body direction and angular velocity. The system is controlled via
a thrust input along the body direction, and via a torque that acts on the angular
velocity, and thus on the body direction along which thrust is provided. We propose
a control law, which is constructed by means of a backstepping procedure, and that
steers the position of the thrust-propelled system to the origin. The results here
presented are based on those in [46].

2.2.1 Background

The thrust-propelled system here presented is similar to a quadrotor system, and
thus the control design steps presented in this section share similarities with the
control design steps found in trajectory tracking controllers for quadrotors. Many
control strategies have been proposed for quadrotor position trajectory tracking [8,
20, 21, 47–51], which range from linearization techniques [47, 48] to global and
robust techniques [50, 51].

2.2.2 Notation

TPS Thrust-propelled system
p = (px, py, pz) ∈ R3 Position of TPS
v = (vx, vy, vz) ∈ R3 Velocity of TPS
n = (nx, ny, pz) ∈ S2 Thrust propelling direction of TPS
ω = (ωx, ωy, ωz) ∈ R3 Angular velocity of thrust propelling direction of TPS
x = (p,v,n,ω) ∈ R12 State of the TPS
ξ = (p,v) ∈ (R3)2 Partial state of the TPS
x̄ = (ξ,n) ∈ R6 × S2 Partial state of the TPS
T ∈ R≥0 Thrust input to the TPS
τ ∈ R3 Torque input input to the TPS
ux = (T,τ) Input to the TPS

In this Section, given x = (x1, x2, x3) ∈ R3 and r = (r1, r2, r3) ∈ ((0,∞))3 we
denote B̄(r,x) ∶= {(y1, y2, y3) ∈ R3 ∶ ∣yi − xi∣ ≤ ri, i ∈ {1,2,3}} as the box centered
around x and with sides of length 2r.

2.2.3 System Model

Given the definitions in the notation above, let us describe next the thrust-propelled
system, which is illustrated in Fig 2.3. Denote (see Remark 2.2.2, in page 19)

x ∶= (x̄,ω) ∶= ((ξ,n),ω) ∶= (((p,v),n),ω) ∈ Ωx, (2.2.1)
ux ∶= (T,τ) ∈ R≥0 ×R3 =∶ Ux, (2.2.2)

18 Thrust propelled systems

e2

e3

e1

n ∈ S2

−g

Tn

p
Π(n)τ

n = propelling direction
g = gravity

τ = Torque input

p = position

T = Thrust input

Figure 2.3: Thrust-propelled system: thrust T along body direction n which can be
rotated by means of the torque τ .

with x and ux as the state of and input to the thrust-propelled system, and where
Ωx̄ ={(p,v,n) ∈ (R3)3 ∶ nTn = 1} = R6 × S2, (2.2.3)
Ωx ={((p,v,n),ω) ∈ Ωx̄ ×R3 ∶ nTω = 0} , (2.2.4)

TxΩx ={(δp, δv, δn, δω) ∈ (R3)4 ∶ nT δn = 0, δnTω + nT δω = 0} , (2.2.5)
denote, respectively, the state set and the tangent space of Ωx at x ∈ Ωx. Consider an
appropriate ux ∶= (T,τ) ∶ R≥0 ↦ Ux, and consider x ∶= (p,v,n,ω) ∶ R≥0 ∋ t ↦ x(t) ∈
Ωx which evolves according to

ẋ(t) = fx(t,x(t),ux(t)),x(0) ∈ Ωx, (2.2.6)
where fx ∶ R≥0 ×Ωx × Ux ∋ (t,x,ux) ↦ fx(t,x,ux) ∈ TxΩx is given by (consider x as
in (2.2.1) and ux as in (2.2.2))

fx(t,x,ux) ∶=(fx̄(t, x̄,ω, T), fω(n,τ)) (2.2.7)
∶=((fξ(t, x̄, T), fn(n,ω)), fω(n,τ)) (2.2.8)
∶=(((v, Tn − g(t)),S (ω)n),Π (n)τ) (2.2.9)
=(v, Tn − g(t),S (ω)n,Π (n)τ). (2.2.10)

and where, given r = (rxy, rxy, rz) ∈ ((0,∞))3,
g ∈ C2(R, B̄(ge3, r)), with max

i∈{0,1,2}
sup
t∈R

∥g(i)(t)∥ <∞, (2.2.11)

is a known time-varying gravity term (see the definition of box B̄ in the notation of
this section). We thus assume that g is sufficiently smooth with essentially bounded
derivatives; and that the image of g is contained in a box around a constant gravity
term ge3, as illustrated in Fig 2.4a. For reasons that will be apparent later, we
require rz < g, which implies that 0 /∈ B̄(ge3, r). Also notice that fx(t,x,ux) ∈ TxΩx,
for any (t,x,ux) ∈ R ×Ωx × Ux, implying that Ωx is indeed positively invariant. In
fact, if (δp, δv, δn, δω) (2.2.10)= fx(t,x,ux) it follows that

nT δn (2.2.10)= nTS (ω)n = 0, (2.2.12)

δnTω + nT δω (2.2.10)= −nTS (ω)ω + nTΠ (n)τ = 0, (2.2.13)

2.2. Control of the thrust-propelled system 19

e2

e3

e1

ge3

α
?

2(rxy + u1

xy
)

2rxy

2(
r
z
+
u
1 z
)

2r
z

8(t;p;v) 2 R× R
3
× R

3

g(t) 2 B(ge3; r)
T?(t;p;v) 2 B(ge3; r+ u1)

0

(a) Illustration of boxes around ge3 and α⋆.

e2

e3

e1

ge3

α
?

0

n
cl

(b) Illustration of Proposition 2.2.6.
Figure 2.4: Illustrations for boxes that contain the gravity g and the control law Tcl.

and thus, it follows from (2.2.5) that, indeed (δp, δv, δn, δω) = fx(t,x,ux) ∈ TxΩx.

Problem 2.2.1. Given the open loop vector field (2.2.10), design ux = (T,τ) ∶
R≥0 ↦ R3 such that limt→∞ p(t) = 0 along trajectories of (2.2.6).

Remark 2.2.2. The decomposition of the state in (2.2.1) and of the vector field
in (2.2.10) in three parts (namely, ξ, x̄ and x; and fξ, fx̄ and fx) will become clear
next, and, in foresight, it is related with the fact that the controller design is done
in three steps.

Remark 2.2.3. Many trajectory tracking problems can be converted into the
form (2.2.10), and restated as in Problem 2.2.1, which is the topic of the next
sections. Our approach is particularly motivated by quadrotor control applications.

2.2.4 Control Design
We design the controller in three steps. These three steps justify the definitions
made in the state definition (2.2.1) and the open loop vector field definition (2.2.10).
First, we construct a thrust T cl ∶ R≥0 × Ωx̄ ∋ (t, x̄) ↦ T cl(t, x̄) ∈ R such that the
vector field

f clξ ∶ R≥0 ×Ωx̄ ∋ (t, x̄)↦ f clξ (t, x̄) ∶= fξ(t, x̄, T cl(t, x̄)) (2.2.14)

approximates that of a double integrator, up to an error. In the second step, we
construct an angular velocity that guarantees that the previous error is steered to
0; more precisely, we construct a ωcl ∶ R≥0 ×Ωx̄ ∋ (t, x̄) ↦ ωcl(t, x̄) ∈ R3 such that
limt→∞ p(t) = 0 along trajectories satisfying ˙̄x(t) = f clx̄ (t, x̄(t)), where

f clx̄ ∶ R≥0 ×Ωx̄ ∋ (t, x̄)↦ f clx̄ (t, x̄) ∶=fx̄(t, x̄,ωcl(t, x̄), T cl(t, x̄))
=(f clξ (t, x̄), fn(n,ωcl(t, x̄))) (2.2.15)

and where f clξ is given from the first step, in (2.2.14). In the final step, we design
τ cl ∶ R≥0 × Ωx ∋ (t,x) ↦ τ cl(t,x) ∈ R3 that steers the error e ∶ R≥0 × Ωx ∋ (t,x) ↦

20 Thrust propelled systems

e(t,x) = S (n) (ω − ωcl(t, x̄)) ∈ R3 to zero. This design follows a backstepping
procedure, and, in the end, Problem 2.2.1 is satisfied along trajectories satisfying
ẋ(t) = f clx (t,x(t)), where

f clx ∶ R≥0 ×Ωx ∋ (t,x)↦ f clx (t,x) ∶=fx(t,x,uclx (t, x̄))
∶=fx(t,x, (T cl(t, x̄),τ cl(t,x))). (2.2.16)

First Step

Consider the double integrator system ξ = (p,v) ∶ R≥0 ∋ t↦ ξ ∈ (R3)2, which, given
u ∶ R≥0 ∋ t↦ u(t) ∈ R3, evolves according to ξ̇(t) = fdi(ξ(t),u(t)) where

fdi ∶ R6 ×R3 ∋ (ξ,u)↦ fdi(ξ,u) ∶= (v,u) ∈ R6. (2.2.17)

Definition 2.2.4. Let ucldi ∶ R6 ∋ ξ ↦ ucldi(ξ)R3 and denote f cldi ∶ R6 ∋ ξ ↦ f cldi(ξ) ∶=
fdi(ξ(t),ucldi(ξ)) ∈ R6. We say that ucldi ∈ Cdi if

1. ucldi ∈ C2(R6, B̄(0,u∞)), where u∞ ∶= (u∞xy u∞xy u∞z) ∈ ((0,∞])2 × (0, g − rz).

2. there exits a positive definite Vdi ∈ C2(R6,R≥0) such that, for all ξ ∈ R6,

a) Vdi(ξ) ≥ αdi(∥ξ∥) for some αdi ∈ K∞, and
b) Wdi ∈ C1(R6,R), given by Wdi(ξ) ∶= −dVξ(ξ)f cldi(ξ), is positive definite.

It follows from Definition 2.2.4 that, given ucldi ∈ Cdi, limt→∞ p(t) = 0 along
solutions of ξ̇(t) = (ṗ(t), v̇(t)) = fdi(ξ(t),ucldi(ξ(t))) for any ξ(0) ∈ R6. This is the
case, since supt≥0 ∥ξ(t)∥ < ∞ and therefore, from positive definiteness of Wdi, it
follows that

lim
t→∞

Wdi(ξ(t)) = 0⇒ lim
t→∞

ξ(t) = 0. (2.2.18)

Hereafter, let ucldi ∈ Cdi be a chosen controller for the double integrator system.
In Subsection 2.2.5, one can find an example of such a control law. Consider then
Tcl ∈ C2(R≥0 ×R6, B̄(ge3, r + u∞)), given by

Tcl ∶ R≥0 ×R6 ∋ (t,ξ)↦ Tcl(t,ξ) ∶= g(t) + ucldi(ξ) ∈ B̄(ge3, r + u∞), (2.2.19)

which corresponds to the three dimensional force that one would choose if Tn
in (2.2.10) were a control input.

Remark 2.2.5. The spirit of the proposed controller is that it is a function of an
externally provided controller for a double integrator satisfying the conditions of
Definition 2.2.4. In this spirit, the notation

Tcl ∶ R≥0 × Cdi ∋ (t,ucldi)↦ Tcl(t,ucldi) ∶= g(t) + ucldi ∈ C2(R6, B̄(ge3, r + u∞)), (2.2.20)

2.2. Control of the thrust-propelled system 21

is more appropriate since, given (t,ucldi) ∈ R≥0 × Cdi, Tcl(t,ucldi) is a function rather
than a three dimensional force. On the other hand, pointwise, i.e., given an ξ ∈ R6,

Tcl(t,ucldi)(ξ) = g(t) + ucldi(ξ) ∈ B̄(ge3, r + u∞),

which is then the three dimensional force contained in B̄(ge3, r + u∞). Another
possible notation is one where

Tcl ∶ R≥0 × Cdi ×R6 ∋ (t,ucldi,ξ)↦ Tcl(t,ucldi,ξ) ∶= g(t) + ucldi(ξ) ∈ B̄(ge3, r + u∞). (2.2.21)

Both notations (2.2.20) and (2.2.21) make explicit the dependency of the control law
on a controller for a double integrator satisfying the conditions of Definition 2.2.4.
However, both notations are dismissed due to their more involved notation.

Notice the codomain and smoothness properties of (2.2.19) follows from (2.2.11)
and the conditions in Definition 2.2.4. Since, g−rz−u∞z > 0, it follows that ∥Tcl(⋅, ⋅)∥ ≥
g − rz − u∞z > 0. We can then define the unit vector associated to (2.2.19), ncl ∈
C2(R≥0 ×R6,S2), given by

ncl ∶ R≥0 ×R6 ∋ (t,ξ)↦ ncl(t,ξ) ∶= Tcl(t,ucldi(ξ))
∥Tcl(t,ucldi(ξ))∥

∈ S2, (2.2.22)

whose smoothness properties follow from (2.2.19). Denote also n⋆ ∈ C2(R≥0,S2),
defined as

n⋆ ∶ R≥0 ∋ t↦ n⋆(t) ∶= ncl(t,ucldi(0)) = ncl(t,0) = g(t)
∥g(t)∥ ∈ S2, (2.2.23)

as the equilibrium thrust propelling direction. It then follows that

lim
ξ→0

∥S (n)ncl(t,ucldi(ξ))∥ = 0⇒ n = ±n⋆(t),∀(t,n) ∈ R≥0 × S2. (2.2.24)

Proposition 2.2.6. Consider (2.2.22) and recall Definition 1.3.3. It follows that,
in fact, ncl ∶ R≥0 × R6 ↦ C (π2 ,e3). Moreover, if u∞xy < ∞ in Definition 2.2.4, then
ncl ∶ R≥0 ×R6 ↦ C (α⋆,e3) with α⋆ as defined in (2.2.25).

Proof. Let (t,ξ) ∈ R≥0 × R6. Given (2.2.22), it follows from (2.2.11) and Defini-
tion 2.2.4 that

eT3 ncl(t,ξ) =eT3 (g(t) + ucldi(ξ))
∥g(t) + ucldi(ξ)∥

= eT3 (g(t) + ucldi(ξ))√
∑i=3
i=1(eTi (g(t) + ucldi(ξ)))2

≥ g − rz − u∞z√
(g − rz − u∞z)2 + 2(rxy + u∞xy)2

=∶ cos(α⋆) ≥ cos(π
2
) = 0. (2.2.25)

Moreover, limu∞xy→∞
α⋆ (2.2.25)= π

2 . The Proposition’s conclusion follows then immedi-
ately from Definition 1.3.3.

22 Thrust propelled systems

T
clT

cl = n
T
T

cl

n
cl = T

cl

kTclk

error = Π(n)Tcl

n

Figure 2.5: Illustration of reasoning for control law (2.2.26).

As shall be seen later, ncl corresponds to the desired thrust propelling direction.
Thus, Proposition 2.2.6 guarantees that ncl points upwards for any time instant
t ∈ R≥0 and any position and velocity (p,v) ∈ R6 (i.e., eT3 ncl(t,p,v) > 0, see Fig 2.4b).
Notice that eT3 n < 0 implies a pitch angle greater than 90○ which may violate safety
constraints, and thus ncl never requires the desired pitch to be greater than 90○.

Proposition 2.2.7. Consider (2.2.22), α⋆ as in Proposition 2.2.6 and recall Def-
inition 1.3.3. Let ν ∈ C(δ,e3) for some δ ∈ [0, π2]. If u∞xy < ∞, it follows that
ν ∈ C(δ +α⋆,ncl(t,ξ))⇔ 1−νTncl(t,ξ) < 1− cos (δ + α⋆) for all (t,ξ) ∈ R≥0 ×R6. If
u∞xy =∞, the same conclusion holds if α⋆ is replaced by π

2 .

Proof. Let (t,ξ) ∈ R≥0 ×R6, and, for brevity, denote θ1 ∶= arccos(eT3 ncl(t,ξ)), θ2 ∶=
arccos(eT3 ν) < δ and θ ∶= arccos(νTncl(t,ξ)). Consider the case u∞xy < ∞. From
Proposition 2.2.6, θ1 ≤ α⋆. Thus, θ1 + θ2 < α⋆ + δ. Then, since arccos(νTncl(t,ξ)) =
θ ≤ θ1+θ2, it follows that 1−νTncl(t,ξ) < 1−cos (δ + α⋆) Def.1.3.3⇔ ν ∈ C(δ+α⋆,ncl(t,ξ)),
for all (t,ξ) ∈ R≥0 ×R6. For u∞xy =∞, it suffices to replace α⋆ by π

2 , since θ2 < δ.

For the thrust controller, we propose then the control law T cl ∈ C2(R≥0 ×Ωx̄,R),
defined as

T cl ∶ R≥0 ×Ωx̄ ∋ (t, x̄)↦ T cl(t, x̄) ∶= nTTcl(t,ξ) ∈ R, (2.2.26)

which is the projection of the desired force in (2.2.19) onto the direction where thrust
can be provided (see Fig 2.5), and whose smoothness properties follow from (2.2.19).
Note that T cl(t, x̄) = arg minT ∈R ∥Tn −Tcl(t,ξ)∥, i.e., (2.2.26) minimizes the error
between the provided force and the desired force. Consider then (2.2.14). Taking
T cl in (2.2.26) and fξ in (2.2.10), it follows that

f clξ ∶ R≥0 ×Ωx̄ ∋ (t, x̄)↦ f clξ (t, x̄) ∶= fξ(t, x̄, Tcl(t, x̄))
(2.2.10) = (v,nnTTcl(t,ξ) − g(t))
(2.2.19) = (v,ucldi(ξ) −Π (n)Tcl(t,ξ))
(2.2.22) = (v,ucldi(ξ) −Π (n)ncl(t,ξ)∥Tcl(t,ξ)∥)
(2.2.17) = f cldi(ξ) − (0,Π (n)ncl(t,ξ)∥Tcl(t,ξ)∥), (2.2.27)

2.2. Control of the thrust-propelled system 23

which means the vector field f clξ approximates the double integrator vector field
f cldi in Definition 2.2.4, up to an error, namely (0,Π (n)Tcl(t,ξ)) as illustrated in
Fig 2.5. Finally, notice that for all (t, x̄) ∈ R≥0 ×Ωx̄ (let x̄ be as in (2.2.1))

− dVdi(ξ)f clξ (t, x̄) =
(2.2.27) = − dVdi(ξ)f cldi(ξ) + ∂v̄Vdi(p, v̄)∣v̄=vΠ (n)Tcl(t,ξ)

Definition 2.2.4 = −Wdi(ξ) + ∂v̄Vdi(p, v̄)∣v̄=vΠ (n)Tcl(t,ξ). (2.2.28)

Second Step

We now construct a control law for the angular velocity ωcl such that limt→∞ p(t) = 0
along the trajectory R≥0 ∋ t↦ x̄(t) = x̄0 + ∫

t

0 f clx̄ (τ, x̄(τ))dτ , with the vector field f clx̄
as in (2.2.15) (and x̄0 ∈ Ω̃x̄(0)). In order to construct such angular velocity, consider
ε > 0 and a positive definite function

Vθ ∈ C2([0, ε),R≥0), and, if ε ≤ 2, lim
s→ε−

Vθ(s) =∞, (2.2.29)

satisfying Vθ(0) = 0 and V ′
θ (s) > 0,∀s ∈ [0, ε). It follows that Vθ is invertible, and for

ε ≤ 2, the domain of V −1
θ is [0,∞) (i.e., the image of Vθ is [0,∞)). Examples of such

functions, for ε ∈ (0, 2], are Vθ(s) = ks(εα − sα)− 1
α with k > 0 and α ≥ 1; and for ε > 2,

examples are Vθ(s) = ks with k > 0. The idea behind the choice of ε is explained in
Remark 2.2.9. For convenience, denote ξ ∈ C2(R≥0 ×Ωx̄, [0,2]), defined as

ξ ∶ R≥0 ×Ωx̄ ∋ (t, x̄)↦ ξ(t, x̄) ∶= 1 − nTncl(t,ξ) ∈ [0,2], (2.2.30)

whose smoothness properties follow from (2.2.22), and corresponding to the deviation
between the thrust propelling direction and the desired thrust propelling direction.
Consider also ωncl ∈ C1(R≥0×Ωx̄,R3) defined as (ωncl ∶ R≥0×Ωx̄ ∋ (t, x̄)↦ ωncl(t, x̄) ∈
R3)

ωncl(t, x̄) ∶=S (ncl(t,ξ)) (∂t̄ncl(t̄,ξ)∣t̄=t + ∂ξ̄ncl(t, ξ̄)∣ξ̄=ξf clξ (t, x̄))

(2.2.22) =S (ncl(t,ξ))Π (ncl(t,ξ))
∂t̄Tcl(t̄,ξ)∣t̄=t + ∂ξ̄Tcl(t, ξ̄)∣ξ̄=ξf clξ (t, x̄)

∥Tcl(t,ξ)∥

(2.2.19) =S (ncl(t,ξ))
ġ(t) + ducldi(ξ)f clξ (t, x̄)

∥Tcl(t,ξ)∥ , (2.2.31)

which corresponds to the angular velocity of ncl under the vector field f clξ , and whose
smoothness properties follow from (2.2.11) and (2.2.22). Similarly to (2.2.23), denote
ω⋆ ∈ C1(R≥0,R3), defined as

ω⋆ ∶ R≥0 ∋ t↦ ω⋆(t) = ωncl(t,06,±n⋆(t)) (2.2.31)= S (g(t)
∥g(t)∥)

ġ(t)
∥g(t)∥ ∈ R3, (2.2.32)

24 Thrust propelled systems

where ±ṅ⋆(t) = ±S (ω⋆(t))n⋆(t). In fact, ω⋆(⋅) is the angular velocity ωncl(⋅, x̄(⋅))
converges to when limt→∞{p(t),v(t), (n(t) ± ncl(t))} = 0. We now proceed to the
design of the control law ωcl for the angular velocity. For that purpose, denote

Ω̃x̄(t) = {x̄ ∈ Ωx̄ ∶ ξ(t, x̄) < ε},∀t ∈ R≥0

∆x̄ = {(t, x̄) ∈ R≥0 ×Ωx̄ ∶ x̄ ∈ Ω̃x̄(t)},

corresponding to the domain of some functions introduced next. Consider then the
function Vx̄ ∈ C2(∆x̄,R≥0) defined as (take x̄ as in (2.2.1))

Vx̄ ∶∆x̄ ∋ (t, x̄)↦ Vx̄(t, x̄) ∶= Vdi(ξ) + Vθ(ξ(t, x̄)), (2.2.33)

whose smoothness properties follow from Definition 2.2.4, (2.2.29) and (2.2.30). It
follows from (2.2.15), (2.2.31), (2.2.28) and (2.2.33) that

W̃x̄(t, x̄,ω) ∶= − ∂t̄Vx̄(t̄, x̄)∣t̄=t − ∂¯̄xVx̄(t, ¯̄x)∣¯̄x=x̄f clx̄ (t, x̄,ω, T cl(t, x̄))
=Wdi(ξ) − V ′

θ (ξ(t, x̄))(S (ncl(t,ξ))n)T×

× (ω −ωncl(t, x̄) + ∥Tcl(t,ξ)∥
V ′
θ (ξ(t, x̄))S (n)∂v̄Vdi(p, v̄)∣v̄=v) . (2.2.34)

Motivated by (2.2.34), we define ωcl ∈ C1(∆x̄,R≥0) as

ωcl(t, x̄) = ωncl(t, x̄) − kθS (ncl(t,ξ))n − ∥Tcl(t,ξ)∥
V ′
θ (ξ(t, x̄))S (n)∂v̄Vdi(p, v̄)∣v̄=v, (2.2.35)

whose smoothness properties follow from Definition 2.2.4, (2.2.19), (2.2.22), (2.2.31)
and (2.2.29). It then follows that

Wx̄(t, x̄) ∶=W̃x̄(t, x̄,ωcl(t, x̄)) (2.2.36)
(2.2.34),(2.2.35)=Wdi(ξ) + kθV ′

θ (ξ(t, x̄))∥S (n)ncl(t,ξ)∥2 (2.2.37)

is non-negative Note that, if ε > 2, then mins∈[0,2] V ′
θ (s) > 0; and if ε ≤ 2, then

mins∈[0,ε) V ′
θ (s) > 0; therefore, in either case, (2.2.35) is well defined. Given (2.2.26)

and (2.2.35) it follows that f clx̄ ∈ C1(∆x̄,R9), with f clx̄ as in (2.2.15), and whose
smoothness properties follow from (2.2.31).

Third Step

We now perform the final step, where we construct a control law τ cl for the
torque which guarantees limt→∞ p(t) = 0 along the trajectory R≥0 ∋ t ↦ x(t) =
x0 + ∫

t

0 f clx (τ,x(τ))dτ , with the vector field f clx as in (2.2.16) (and x0 ∈ Ω̃x(0)).
Similarly to the procedures in the second step (where we introduced ωncl), denote
τω

cl ∈ C0(∆x,R3), defined as

τω
cl(t,x) ∶=∂t̄ωcl(t̄, x̄)∣t̄=t + ∂¯̄xω

cl(t, ¯̄x)∣¯̄x=x̄fx̄(t, x̄,ω, T cl(t, x̄)), (2.2.38)

2.2. Control of the thrust-propelled system 25

which, physically, provides the time derivative of ωcl(t, x̄(t)), i.e., ω̇cl(t, x̄(t)) =
τω

cl(t,x(t)) along trajectories of ˙̄x(t) = fx̄(t, x̄(t),ω(t), T cl(t, x̄(t))). Again, simi-
larly to the previous step, denote

Ω̃x(t) = Ωx̄(t) ×R3,∀t ∈ R≥0 (2.2.39)
∆x = {(t,x) ∈ R≥0 ×Ωx ∶ x ∈ Ω̃x(t)}, (2.2.40)

corresponding to the domain of some functions introduced next.
Recall that we do not control the angular velocity ω, otherwise choosing

ω(t) = ωcl(t, x̄(t)) at each time instant t would suffice to accomplish the goal
of Problem 2.2.1. Denote then eω ∈ C1(∆x,R3), defined as

∆x ∋ (t,x)↦ eω(t,x) ∶= S (n) (ω −ωcl(t, x̄)) ∈ R3, (2.2.41)

corresponding to an error that we shall use in a backstepping procedure, and whose
smoothness properties follow from (2.2.35). Moreover, notice that

fx̄(t, x̄,ω, T cl(t, x̄)) =fx̄(t, x̄,ω −ωcl(t, x̄) +ωcl(t, x̄), T cl(t, x̄))
(2.2.41) =(f clx̄ (t, x̄),03) − (06,eω(t,x)), (2.2.42)

which justifies why we wish to steer the error eω to zero. Intuitively, the vector field
in (2.2.42) approximates the vector field f clx̄ , designed in the previous step, and for
which it follows that limt→∞ p(t) = 0 along trajectories of ˙̄x(t) = f clx̄ (t, x̄(t)). Consider
now the function Vω ∶ R3 ∋ z ↦ Vω(z) = 1

2vωz
Tz, with vω > 0, and Vx ∈ C1(∆x,R≥0),

defined as

∆x ∋ (t,x)↦ Vx(t,x) = Vx̄(t, x̄) + Vω(eω(t,x)) ∈ R≥0, (2.2.43)

whose smoothness properties follow from (2.2.33), (2.2.41) and smoothness of Vω.
Then, it follows that (see details in [46])

W̃x(t,x,τ) ∶= −∂t̄Vx(t̄, x̄)∣t̄=t − ∂x̄Vx(t, x̄)∣x̄=xfx(t,x, (T cl(t, x̄),τ))
=Wx̄(t, x̄) + vωeTω(t,x) (τ − S (n)τ d(t,x) −Π (n)ωncl(t, x̄)nTωncl(t, x̄) + V ′

θ(ξ(t,x̄))
vω

Π (n)ncl(t,ξ)) , (2.2.44)

and, motivated by (2.2.44), we design τ cl ∈ C0(∆x,R3), defined as

τ cl(t,x) = Π (n)τωcl(t,x) + S (n)ωcl(t, x̄)nTωcl(t, x̄) + kωS (n)eω(t,x) + V ′
θ(ξ(t,x̄))
vω

S (n)ncl(t,ξ), (2.2.45)

for some kω ≥ 0, and whose smoothness properties follow from (2.2.22), (2.2.29),
(2.2.41) and (2.2.38). For this choice, it follows that

Wx(t,x) ∶=W̃x(t,x,τ cl(t,x)) =Wx̄(t, x̄) + 2kωVω(eω(t,x)) ≥ 0, (2.2.46)

where Wx ∈ C1(∆x,R≥0) and whose smoothness properties follow from (2.2.37),
(2.2.41) and smoothness of Vω.

26 Thrust propelled systems

Let us now summarize the previous results. Given (2.2.26) and (2.2.45), we define
the control law uclx ∈ C0(∆x,R4) as

uclx (t,x) ∶= (T cl(t, x̄),τ cl(t,x)), (2.2.47)

and, for this choice, it follows that along a trajectory of ẋ(t) = f clx (t,x(t)),

V̇x(t,x(t)) = −Wx(t,x(t)) ≤ 0, (2.2.48)

where f clx ∈ C0(∆x,R12), with f clx (t,x) = fx(t,x,uclx (t,x)), owing to (2.2.11), (2.2.26)
and (2.2.45). Finally, we can verify that along a trajectory of ẋ(t) = f clx (t,x(t))

sup
t≥0

∣Ẇx(t,x(t))∣ <∞, (2.2.49)

which means that V̈ (t,x(t)) = Ẇx(t,x(t)) is uniformly bounded (as a function of
t ∈ R≥0) [46].

Theorem 2.2.8. Consider the open loop vector field (2.2.10), the control law (2.2.47)
and the closed loop vector field (2.2.16). Then, it follows that limt→∞ p(t) = 0, along
any trajectory of ẋ(t) = f clx (t,x(t)) with x(0) ∈ Ωx(0). Moreover, when ε ≤ 2,
limt→∞ (n(t) − n⋆(t)) = 0, with n⋆ in (2.2.23).

Sketch of proof. Consider a solution x ∶ R≥0 ∋ t ↦ x(t) = x0 + ∫
t

0 f clx (τ,x(τ))dτ ∈
Ωx with x0 ∈ Ωx(0) (and with x decomposed as in (2.2.1)). By definition, Vx
in (2.2.43) is lower bounded by 0. It then follows from (2.2.48) and (2.2.49), and by
invoking Barbalat’s lemma that limt→∞ V̇x(t,x(t)) = − limt→∞Wx(t,x(t)) = 0. It then
follows from (2.2.37) that limt→∞Wdi(ξ(t)) = 0, and therefore (2.2.18) holds, which
implies that limt→∞ ξ(t) = 0 ⇒ limt→∞ p(t) = 0. It also follows from (2.2.37) that
limt→∞ ∥S (n)ncl(t,ξ(t))∥2 = limt→∞ ∥S (n)ncl(t,0)∥2 = limt→∞(n(t) ± n⋆(t)) = 0.
Thus, when ε ≤ 2, limt→∞(n(t) − n⋆(t)) = 0, since Vx(t,x(t)) ≤ Vx(0,x(0)) <∞ for
all t ∈ R≥0, and limn→n⋆(t) Vx̄(t,06,n) =∞ for any t ∈ R≥0.

Remark 2.2.9. The idea behind the choice of ε is the following: if ε > 2, n(⋅) may
converge to either n⋆(⋅) or −n⋆(⋅); on the other hand, if ε ≤ 2, n(⋅) converges to
ncl(⋅) (assuming that x(0) ∈ Ωx(0)). Moreover, if 0 < ε ≤ 1, and along a trajectory
x(⋅) of (2.2.16) for x(0) ∈ Ωx(0), it follows from Theorem 2.2.8 that ξ(t, x̄(t)) ∈
[0, ε) ⇒ n(t) ∈ C(arccos(1 − ε),ncl(t,p(t),v(t))) for all t ≥ 0, and therefore, from
Proposition 2.2.7, n(t) ∈ C(arccos(1− ε)+α⋆,e3) for all t ≥ 0. This means that ε, in
conjunction with α⋆, may be chosen such that, for example, n(⋅) points upwards at
all times (provided, obviously, that n(0) points upwards).

2.2.5 Bounded Control of Double Integrator
The proposed control law for the double integrator is inspired by the strategy
proposed in [52]. Also, the same control law depends on functions whose properties
we describe in the next definition.

2.2. Control of the thrust-propelled system 27

Definition 2.2.10. We say σ ∈ Σ, if σ ∈ C3(R, [−σ̄, σ̄]) for some σ̄ ∈ R>0, σ(s)s > 0
for all s ∈ R, σ′(s) > 0 for all s ∈ R, and σ̄′ ∶= sups∈R ∣σ′(s)∣ <∞.

Let n ∈ N and let

ξ = (p,v) = ((p1,⋯, pn), (v1,⋯, vn)) ∈ R2n,uξ ∈ Rn (2.2.50)

be the state of and input to an n-dimensional double integrator, with vector field
fξ ∶ R2n ×Rn ↦ R2n, given by

fξ ∶ R2n ×Rn ∋ (ξ,uξ)↦ fξ(ξ,uξ) ∶= (v,uξ) ∈ R2n, (2.2.51)

with ξ decomposed as in (2.2.50). A control law uclξ can be found that satisfies the
conditions of Definition 2.2.4, i.e. uclξ ∈ Cdi. Indeed, consider uclξ ∶ R2n ∋ ξ ↦ uclξ (ξ) ∈
Rn given by

uclξ (ξ) ∶= (uclξ (p1, v1),⋯, uclξ (pn, vn)) ∈ Rn, (2.2.52)

uclξ (p, v) ∶= −ρ(Ω(v) + σ(p)) − k v + σ(p)
Ω(v) + σ(p)

σ(p)
Ω′(v) − σ

′(p) v

Ω′(v) , (2.2.53)

with ξ as in (2.2.50), and where σ, ρ ∈ Σ, and k > 0, and Ω ∈ C3(R,R) satisfies
Ω(v) = v,∀v ∈ Ωv, [−σ̄, σ̄] ⊂ Ωv ⊂ R and ∣Ω(v)∣ > ∣v∣ ∧Ω′(v) ≥ ∣v∣,∀v /∈ Ωv. It follows
that supv∈R ∣ v

Ω′(v) ∣ =∶M <∞, where M > σ̄ necessarily. Therefore we have that, in
fact, ∣uclξ (⋅, ⋅)∣ ≤ B ∶= ρ̄ + kσ̄ + σ̄′M < ∞ and consequently uclξ ∶ R2n ↦ B̄(B1n,0).
The equilibrium 02n of f clξ (ξ) = fξ(ξ,uclξ (ξ)) is asymptotically stable, and for Vξ ∈
C2(R2n,R≥0) defined as (ξ as in (2.2.50))

Vξ(ξ) ∶=∑
i=n

i=1
(k∫

pi

0
σ(s)ds + 1

2
(Ω(vi) + σ(pi))2) (2.2.54)

it follows that Wξ ∈ C1(R2,R), defined as (ξ as in (2.2.50))

Wξ(ξ) ∶= − dVξ(ξ)f clξ (ξ) (2.2.55)
=∑i=n

i=1
kσ2(pi) +Ω′(vi)(Ω(vi) + σ(pi))ρ(Ω(vi) + σ(pi)), (2.2.56)

is in fact definite positive.

Example 2.2.1. Consider the functions σ(s) = 0.25 s√
1+s2

, ρ(s) = 0.70 s√
1+s2

,
k = 1 and Ω as an odd function and as the solution to the differential equation
Ω′′′(s) = 0 for s ∈ [0,1), Ω′′′(s) = s − 1 for s ∈ [1,2] and Ω′′′(s) = 1 for s > 2
and initial conditions Ω(0) = 0, Ω′(0) = 1 and Ω′′(0) = 0. These three functions
satisfy the conditions prescribed before.

28 Thrust propelled systems

2.3 Controller for a quadrotor

2.3.1 Background

Quadrotors are aerial vehicles, whose popularity stems from their ability to be used
in relatively small spaces, their reduced mechanical complexity, and inexpensive
components.

Many control strategies have been proposed for trajectory tracking of quadro-
tors [8, 20, 21, 47–51]. Controllers can be designed by linearizing the system around
the hover condition, but these are only stable for small roll and pitch angles [47, 48].
Controllers have also been designed based on an inner attitude control loop and an
outer position control loop [49]. Controllers that guarantee trajectory tracking for
all initial conditions can also be found [50]. Since the quadrotor dynamics depend
on the vehicle’s rotation matrix, most control strategies also provide a control law
for the space corresponding to the yaw motion. Different parameterizations for the
vehicle’s rotation matrix have also been used, such as euler angles [49], and unit
quaternions [50, 51].

2.3.2 Notation

m,J Quadrotor’s mass and moment of inertia
p,v ∈ R3 Quadrotor’s position and velocity
R ∈ SO(3),ω ∈ R3 Quadrotor’s rotation matrix and angular velocity
r ∶=Re3 ∈ S2 Quadrotor’s direction along which input thrust is provided
z = (p,v,R,ω) State of the quadrotor
T ∈ R,τ ∈ R3 Quadrotor’s input thrust propelling force and input torque
uz = (T,τ) Input to the quadrotor system

2.3.3 Modeling

A sketch of a simplified model of a quadrotor is presented in Fig. 2.6. Consider then

p

p/m: Position/mass

Tr

T : Thrust
r: Thust direction

mge3

τ τ : Torque

Figure 2.6: Modeling of a quadrotor system

2.3. Controller for a quadrotor 29

the notation as above, and denote then

z ∶=(p,v,R,ω) ∈ Ωx, (2.3.1)
uz ∶=(T,τ) ∈ R≥0 ×R3, (2.3.2)

as the state of and the input to the quadrotor system, and where

Ωx = {(p,v,R,ω) ∈ (R3)2 ×R3×3 ×R3 ∶RTR = I,RRT = I} , (2.3.3)
TzΩx = {(δp, δv, δR, δω) ∈ (R3)2 ×R3×3 ×R3 ∶ δRTR +RT δR = 0, δRRT +RδRT = 0}, (2.3.4)

denote, respectively, the state set and the tangent space of Ωx at z ∈ Ωx. Let
uz ∶= (T,τ) ∶ R≥0 ↦ R4, and consider z ∶= (p,v,R,ω) ∶ R≥0 ↦ Ωx which evolves
according to

ż(t) = fz(z(t),uz(t)),z(0) ∈ Ωx, (2.3.5)

where fz ∶ Ωz ×R4 ∋ (z,uz) ↦ fz(z,uz) ∈ TxΩx is given by (consider z as in (2.3.9)
and uz as in (2.3.2))

Ωz ×R4 ∋ (z,uz)↦ fz(z,uz) ∶= (v, T
m
Re3 − ge3,RS (ω) , J−1 (τ − S (ω)Jω)) ∈ TxΩx. (2.3.6)

Notice that fz(z,uz) ∈ TzΩx, for any (z,uz) ∈ Ωx ×R4, implying that Ωx is indeed
positively invariant. In fact, if (δp, δv, δR, δω) = fz(t,z,uz) it follows that

δRTR +RT δR (2.3.6)= (RS (ω))TR +RTRS (ω) = −S (ω)RTR +RTRS (ω)
(2.3.3)= − S (ω) + S (ω) = 0, (2.3.7)

δRRT +RδRT (2.3.6)= RS (ω)RT +R(RS (ω))T =RS (ω)RT −RS (ω)RT

(2.3.3)= R(S (ω) − S (ω))RT = 0, (2.3.8)

and thus (δp, δv, δn, δω) = fz(z,uz)
(2.3.4)
∈ TzΩx.

Problem 2.3.1. Given (2.3.6) and a desired position trajectory p⋆ ∈ C4(R≥0,R3),
design uz ∶= (T,τ) ∶ R≥0 ↦ R4 such that limt→∞(p(t) − p⋆(t)) = 0 along solutions
of (2.3.5).

2.3.4 Control Strategy
The control strategy here pursed is exactly that described in the beginning of this
Chapter (see Figure 2.2, in page 14), and illustrated in Fig 2.7. In the particular
case of the quadrotor system, the degree of freedom corresponds to rotations around
the third body axis, Re3, along which thrust is provided.

In order to pursue with the previous strategy, let us denote

x ∶=(e,v, r,$) ∈ Ωx, (2.3.9)
ux ∶=(a,α) ∈ R4 =∶ Ux, (2.3.10)

30 Thrust propelled systems

TP Input Physical Physical TP State

TP Controller

Input

Transformation

State

Transformation

Input State

Controller for

rotation around r

DoF

Figure 2.7: Control architecture as laid out in Fig. 2.1, but applied specifically to
the quadrotor system.

with Ωx as in (2.2.4). Let us then present the function, that is not a diffeomorphism
between Ωz and Ωx, but rather a diffeomorphism between the set spanned by
{(p,v,Re3,Π (Re3)Rω)}z∈Ωz (which is in fact the set Ωx) and Ωx. Denote then,
for each time instant t ∈ R≥0, gxz(t, ⋅) ∶ Ωz ↦ Ωx, defined as

gxz(t,z) ∶=(gez(t,z),gvz(t,z),grz(t,z),g$z (t,z)) (2.3.11)
∶=(p − p⋆(t),v − ṗ⋆(t),Re3,Π (Re3)Rω). (2.3.12)

Consider then also uclz ∶= (T cl,τ cl) ∶ Ωz × Ux × R ∋ (z,ux, τ3) ↦ uclz (z,ux, τ3) ∈ R3

defined as

uclz (z,ux, τ3) ∶= (T cl(a),τ cl(z,ux, τ3)) (2.3.13)
T cl(a) ∶=ma (2.3.14)
τ cl(z,ux, τ3) ∶= S (ω)Jω + Je3τ3 + J (RTα − S (e3)ω(eT3ω)) , (2.3.15)

with z as in (2.3.1) and ux as in (2.3.10) (later a and α will take the roll of thrust
and torque of the thrust propelling system with state x; while τ3 is a free input that
can be used to control the degree of freedom).

For convenience, given a function R≥0 ×Ωz ∋ (t,z)↦ g(t,z), denote (let τ3 ∈ R)

R≥0 ×Ωz × Ux ∋ (t,z,ux)↦ (Dfzg)(t,z,ux)
(Dfzg)(t,z,ux) ∶= ∂t̄g(t̄,z)∣t̄=t + ∂z̄g(t, z̄)∣z̄=zfz(z,uclz (z,ux, τ3)).

It then follows from straightforward calculations that

(Dfzgez)(t,z,ux) =v − ṗ⋆(t) = gvz(t,z); (2.3.16)
(Dfzgvz)(t,z,ux) =aRe3 + ge3 − p̈⋆(t) = agrz(t,z) + ge3 − p̈⋆(t); (2.3.17)
(Dfzgrz)(t,z,ux) =RS (ω)e3 = S (Rω)Re3 = S (Π (Re3)Rω)Re3

=S (g$z (t,z))grz(t,z); (2.3.18)

2.3. Controller for a quadrotor 31

and that

(Dfzg$z)(t,z,ux) =Π (Re3) (RS (ω)e3 +RJ−1 (τ cl(z,ux, τ3) − S (ω)Jω))−
((RS (ω)e3)(Re3)T + (Re3)(RS (ω)e3)T)Rω

=Π (Re3) (RS (ω)e3 +RJ−1 (τ cl(z,ux, τ3) − S (ω)Jω))+
S (Re3)RωeT3ω

(2.3.15) =Π (Re3)α = Π (grz(t,z))α. (2.3.19)

As such, combining results, it follows that (x as in (2.3.9) and ux as in (2.3.10))

fx(t,x,ux) ∶=(Dfzgxz)(t,z,ux) = (v, ar − g(t),S ($) r3,Π (r)α), (2.3.20)

and with g(t) ∶= ge3 + p̈⋆(t). The vector field fx is that of a thrust-propelled system
and, as such, the controller presented in Section 2.2 may be used to accomplish the
goal as stated in Problem 2.3.1. Notice that τ3 in the control law (2.3.13) does not
interfere with (2.3.20). This means that we can use τ3 to control the degree of freedom
corresponding to the yaw motion of the quadrotor (more precisely, the degree of
freedom corresponds to rotations around Re3), and as illustrated in Fig 2.7.

2.3.5 Simulations
In Fig. 2.8, we present a simple solution to (2.3.5), with z(0) = (0,0,e3,0) ∈ Ωz, and
by using the control law (2.3.15) composed with the control from a thrust-propelled
system.

y (m)

-2

-1

0

1
-1.5

-1

x (m)

-0.5
0

0.5
1

1

0

0.5z
(m

)

(a) Trajectories
Time (s)

0 5 10 15

(m
)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

p1

p2

p3

(b) Position tracking error
Time (s)

0 5 10 15

(m
/s
)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

v1

v2

v3

(c) Velocity tracking error

Time (s)
0 5 10 15

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n1

n
⋆
1,t

n2

n
⋆
2,t

n3

n
⋆
3,t

(d) Unit vector n ∶= Re3

and n⋆
(t) in (2.2.23)

Time (s)
0 5 10 15

(r
ad

/s
)

-1

-0.5

0

0.5

1

ω1

ω⋆
1,t

ω2

ω⋆
2,t

ω3

ω⋆
3,t

(e) Angular velocity ω and
and ω⋆

(t) in (2.2.32)

Time (s)
0 1 2 3 4 5

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.01 ∗ T

τ1

τ2

τ3

(f) Control inputs

Figure 2.8: Simulation for z(0) = (0,0,e3,0) ∈ Ωz.

32 Thrust propelled systems

2.4 Controller for load lifting by a quadrotor

2.4.1 Introduction

Slung load transportation by a UAV is a challenging control problem, since the
load sways with respect to the UAV and therefore it is desirable to reduce the
relative motion between the UAV and the load. Different control strategies have
been proposed for slung loads attached to one or several UAVs by cables. Differential
flatness has been explored for the purposes of control and motion planning [30, 31],
while dynamic programming has also been used for trajectory planning [53], with the
goal of minimizing the load swing. Adaptive controllers have been proposed which
compensate for different unknown parameters [29, 34, 54], such as a variable center
of gravity, an unknown load mass or a constant input disturbance. A closed loop
approach, where the motion of the load is tracked visually from the transporting
helicopter, is found in [28], where the information from the visual tracking system is
used to determine the frequency of the load sway and thereby the length of the rope.
In [10], several quadrotors lift a single load, and the relations in static equilibrium
between three quadrotors and a load are analyzed. In [30], differential flatness of
the quadrotor-load system is explored for the purposes of trajectory planning.

Regarding the modeling of the slung load system, it is important to emphasize
that the system’s dynamics change according to whether the cable connecting the
load and the quadrotor is under tension or compression, and such a modeling is
found in [30].

In this section, we show that system quadrotor-load may be transformed into
a thrust-propelled system, and we describe and impose conditions on the desired
trajectory that guarantee that the cable remains under tension. Another contribution
concerns a disturbance estimator that guarantees that the load tracks a desired
trajectory under a constant thrust input disturbance. The results here presented
are based on those in [54].

The remainder of this section is structured as follows. In subsection 2.4.3, the
model of the quadrotor-load system is presented. In subsection 2.4.4, we provide a
coordinate transformation that transforms the quadrotor-load system into the thrust-
propelled system. In subsection 2.4.5, a disturbance removal controller is proposed.
Finally, in subsection 2.4.6, illustrative simulations and preliminary experimental
results are presented.

2.4.2 Notation

For brevity, denote quadrotor by UAV.
M,m > 0 UAV’s and load’s masses
L > 0 Cable’s length
P,p ∈ R3 UAV’s and the load’s center of mass positions
V,v ∈ R3 UAV’s and the load’s center of mass velocities

2.4. Controller for load lifting by a quadrotor 33

z = (p,v,P,V) State of the UAV-manipulator system
U ∈ R UAV’s input thrust/propelling force
r ∈ S2 UAV’s input attitude
uz = (U, r) Input to the UAV-manipulator system

2.4.3 Modeling

Consider a quadrotor vehicle and a point mass load attached to each other by a
cable, as illustrated in Fig. 2.9. One of the cable’s end-point coincides with the
quadrotor’s center of mass, while the other end-point coincides with the load’s center
of mass. When the cable is not under tension, the load behaves as a free falling
(un-actuated) point mass, while the quadrotor behaves as a standard quadrotor. On
the other hand, when the cable is under tension, it forces the distance between the
quadrotor and the load to be identical to the cable length, and for as long as the
cable remains under tension. As such, a taut cable links the quadrotor and the load,
and the load is no longer un-actuated. In fact, the system quadrotor-load may be
modeled as a hybrid system, with its (open-loop) vector field switching according to
some function of the state and the input. Such modeling is performed in [30], where
differential flatness of the system with respect to the load’s position is verified, and
exploited so as to plan a trajectory for the quadrotor. Consider the constants and
variables as defined in the previous Notation section. Denote then

z = (p,v,P,V) ∈ Ωz, (2.4.1)
uz = (U, r) ∈ R × S2 =∶ Uz, (2.4.2)

p

P P=M : Quad position/mass
p =m : Load position/mass

cable
length

:=
L
=
kP
{pk

Mge3

mge3

Tn

{Tn

Ur

T : Cable tension
n = P−p

L
: Cable direction

U : Thrust input
r : Quadrotor attitude input

uz = (U; r) 2 R× S2

Figure 2.9: Modeling of quadrotor-load system

34 Thrust propelled systems

as the state of and input to the quadrotor-load system, where
Ωz = {(p,v,P,V) ∈ R12 ∶ (P − p)T (P − p) = L2, (P − p)T (V − v) = 0}. (2.4.3)
TzΩz = {(δp, δv, δP, δV) ∈ R12 ∶ (P − p)T (δP − δp) = 0,

(δP − δp)T (V − v) + (P − p)T (δV − δv) = 0}. (2.4.4)
with Ωz as the state set and TzΩz as the tangent space to Ωz at z. Given an
appropriate uz ∶ R≥0 ↦ R3, the state of the quadrotor-load system z ∶ R≥0 ↦ Ωz

evolves according to
ż(t) = fz(z(t),uz(t) + be1),z(0) ∈ Ωz (2.4.5)

where b is a constant unknown thrust input disturbance, and where fz ∶ Ωz × Uz ∋
(z,uz)↦ fz(z,uz) ∈ TzΩz ⊂ R12 is given by

fz(z,uz) ∶= (v, T̄ (z,uz)
m

n̄(z) − ge3,V,
Ur
M

− T̄ (z,uz)
M

n̄(z) − ge3) , (2.4.6)

with z as in (2.4.1), uz as in (2.4.2), and where g is the acceleration due to gravity;
and where n̄ ∶ Ωz ∋ z↦ n̄(z) ∈ S2, ω̄ ∶ Ωz ∋ z↦ ω̄(z) ∈ R3 and T̄ ∶ Ωz × Uz ∋ (z,uz)↦
T̄ (z,u) ∈ R are defined as

n̄(z) ∶= P − p
∥P − p∥ = P − p

L
, (2.4.7)

ω̄(z) ∶= S (n̄(z)) ∂n̄(z)
∂z

fz(z, ⋅) = S (n̄(z)) V − v
L

, (2.4.8)

T̄ (z,u) ∶= m

M +m
(uT n̄(z) +ML∥V − v∥2) . (2.4.9)

Physically, the functions n̄, ω̄ and T̄ relate to the cable’s unit vector, the cable’s
angular velocity and to the tension on the cable, respectively (see Fig. 2.9). It can
now be verified that for any (z,uz) ∈ Ωz × Uz, it holds that indeed fz(z,uz) ∈ TzΩz.
For that purpose, if we denote (δp, δv, δP, δV) = fz(z,uz), it follows that

(P − p)T (δP − δp) (2.4.6)= (P − p)T (V − v) (2.4.3)= 0, (2.4.10)
(δP − δp)T (V − v) + (P − p)T (δV − δv) = (2.4.11)
(2.4.6)= (V − v)T (V − v) + (P − p)T (Ur

M
− T̄ (z,u)m+M

Mm
n̄(z)) (2.4.7),(2.4.9),(2.4.3)= 0. (2.4.12)

As such, given the vector field in (2.4.6), it follows that a trajectory of (2.4.5) that
starts in Ωz remains in Ωz; and, consequently, the distance between the UAV and
load remains constant and equal to the cable length. An approach for obtaining the
vector field in (2.4.6) by means of the Euler-Lagrange formalism is found in [30].
Problem 2.4.1. Given the system (2.4.5) and a desired trajectory p⋆ ∈ C4(R≥0,R3),
design uz = (U, r) ∶ R≥0 ↦ R × S2 such that limt→∞(p(t) − p⋆(t)) = 0.

Notice that if U ∶ R≥0 ↦ R and r ∶ R≥0 ↦ S2 are control inputs then the quadrotor
system itself is fully-actuated; however, for the same inputs, the system quadrotor-
load is under-actuated.

2.4. Controller for load lifting by a quadrotor 35

2.4.4 Change of Coordinates
We now provide the diffeomorphism, and the control law function, which are used in
the control architecture explained in beginning of this chapter (see page 13). With
the help of Proposition 1.3.10, in page 11, it follows that

Ωz × Uz ∋ (z,uz)↦ τ̄ (z,uz) ∶= dω̄(z)fz(z,uz) =
1
ML

Π (n̄(z))Ur. (2.4.13)

Notice that Ur = (UrT n̄(z))n̄(z)+Π(n̄(z))Ur =∶ U1n̄(z)+U2 Moreover, notice that
U1 = UrT n̄(z) acts on the tension function in (2.4.9), while U2 = Π(n̄(z))Ur acts on
the angular acceleration (torque) of the cable’s unit vector in (2.4.13). This insight
suggests a path for designing the control law, namely, U1 is designed so as to control
the cable tension, and guaranteeing it remains positive; while U2 is designed so as
to control the cable’s unit vector.

Define then the transformed state as (this will be the thrust-propelled state)

x = (e,υ,n,ω) ∈ {(ẽ, υ̃, ñ, ω̃) ∈ R3 ×R3 × S2 ×R3 ∶ ñT ω̃ = 0} =∶ Ωx, (2.4.14)

and with a physical interpretation for the state components that we provide later.
We can now define, for each time instant t ∈ R≥0, the diffeomorphism gxz(t, ⋅) ∶ Ωz ∋
z↦ gxz(t,z) ∈ Ωx – with gzx(t, ⋅) ∶= (gxz(t, ⋅))−1 ∶ Ωx ∋ x ↦ gzx(t,x) ∈ Ωz – defined as (z
as in (2.4.1) and x as in (2.4.14))

gxz(t,z) ∶= (p − p⋆(t),v − ṗ⋆(t), n̄(z), ω̄(z)), (2.4.15)
gzx(t,x) ∶= (e + p⋆(t),υ + ṗ⋆(t), Ln + e + p⋆(t), LS (ω)n + υ + ṗ⋆(t)). (2.4.16)

Let us now provide a physical interpretation for the previous variables. Consider
a z ∈ Ωz and a desired position trajectory p⋆ ∈ C4(R≥0,R3). Then e = p − p⋆ and
corresponds to the position tracking error (as such, the goal of Problem 2.4.1 may
be restated as limt→∞ e(t) = 0); υ = v − ṗ⋆ corresponds to the velocity tracking
error; n = n̄(z) corresponds to the unit vector associated to the cable direction, as
illustrated in Fig. 2.9; and ω = ω̄(z) corresponds to the angular velocity of n.

For convenience, denote

ux ∶= (T,τ) ∈ R4 (2.4.17)

where T ∈ R stands for the tension in the cable, and τ ∈ R3 stands for the torque
input to control the cable direction, and which will be the inputs once the system
is transformed into the thrust-propelled form. Additionally, denote Ux ∶ Ωx ×R4 ∋
(x,ux)↦Ux(x,ux) ∈ R3 defined as

Ux(x,ux) = n((M +m)T −md∥ω∥2) +MLΠ (n)τ , (2.4.18)

and Γ = {(x,ux) ∈ Ωx ×R4 ∶ Ux(x,ux) ≠ 0}. Let us now provide the control input
transformation mapping, namely

uclz ∶ Γ ∋ (x,ux)↦ uclz (x,ux) ∶= (∥Ux(x,ux)∥,
Ux(x,ux)

∥Ux(x,ux)∥
) ∈ R>0 × S2. (2.4.19)

36 Thrust propelled systems

Consider a time instant t ∈ R≥0 and a x ∈ Ωx. Then, let z = gzx(t,x) and uz =
uclz (x,ux). For this, it follows that the tension in the cable, given in (2.4.9), becomes

T̄ (z,uz + be1)
(2.4.16),(2.4.18),(2.4.19)= mT + m

M +mb
nTUx(x,ux)
∥Ux(x,ux)∥

, (2.4.20)

while the torque in the cable, given in (2.4.13), becomes

τ̄ (z,uz + be1)
(2.4.16),(2.4.18),(2.4.19)= Π (n)τ + b

ML
Π (n) Ux(x,ux)

∥Ux(x,ux)∥
. (2.4.21)

An interpretation for ux = (T,τ) ∈ R4 is now clearer from (2.4.20) and (2.4.21).
Indeed, in the absence of a disturbance, i.e., b = 0, T yields the tension in the cable,
apart from a positive multiplicative constant, namely the load’s mass; while τ yields
the torque in the cable.

We now transform the vector field (2.4.6) into that of the thrust-propelled system.
Given the mappings (2.4.16) and (2.4.19), it follows that (denote g(t) ∶= ge3 + p̈⋆(t))

(∂t̄gxz(t̄,z)∣t̄=t + ∂z̄gxz(t,z)∣z̄=zfz(z,uclz (x,ux) + be1)) ∣x=gxz (t,z) =
=(υ, Tn − g(t),S (ω)n,S (n)τ)+

(0, 1
M +mnnT Ux(x,ux)

∥Ux(x,ux)∥
,0, 1

ML
Π (n) Ux(x,ux)

∥Ux(x,ux)∥
) b (2.4.22)

=∶fx(t,x,ux) +Φ(x,ux)b (2.4.23)

where fx is the thrust-propelled vector field (as defined in (2.2.10)). As such, in the
absence of a disturbance, any controller for a thrust-propelled system may be used
in accomplishing the goal as stated in Problem 2.4.1.

2.4.5 Disturbance Estimator
In this section, we provide a solution that accomplishes the goal described in
Problem 2.4.1, when a constant unknown disturbance b ∈ {β ∈ R3 ∶ ∣β∣ ≤ bmax} =∶ Ωb

exists, for some known bmax ≥ 0. Denote b̂ ∶ R≥0 ↦ R as a disturbance estimate
whose dynamics are designed next such that the goal described in Problem 2.4.1
is accomplished. For convenience, and since the disturbance estimate is dynamic,
denote x̃ = (x, b̂) ∈ Ωx ×R =∶ Ωx̃ as an extended state. Also, ˙̂

b(t) = fb(t, x̃(t)), where
fb ∈ C(R≥0 × Ωx̃,R) is a vector field that is constructed next. With the previous
notions in mind, it follows that ˙̃x(t) = fx̃(t, x̃(t),ux(t)), where

fx̃(t, x̃,ux) = (fx(t,x,ux) +Φ(x,ux)b, fb(t, x̃)) (2.4.24)

and, it is straightforward to verify that,

(∂t̄gxz(t̄,z)∣t̄=t + ∂z̄gxz(t,z)∣z̄=zfz(z,uz)) ∣x=gxz (t,z),uz=uclz (x,ux)−b̂e1
=

= (fx(t,x,uclx (t,x)) +Φ(x,uclx)(b − b̂), fb(t, x̃)). (2.4.25)

2.4. Controller for load lifting by a quadrotor 37

with e1 ∈ R4. If the disturbance b were known, it would suffice to choose b̂(0) = b,
and fb = 0, in order to accomplish the goal in Problem 2.4.1. Since b is unknown,
a different strategy is pursed, namely the disturbance estimate is updated with
a projector operator that guarantees that the disturbance estimate remains in
Ωb̂ ∶= {β ∈ R3 ∶ ∣β∣ ≤ bmax + ε}, where ε > 0 is a design parameter that can be chosen as
small as desired; and provided that b̂(0) ∈ Ωb̂ (which is satisfied if b̂(0) = 0). Consider
then a Lyapunov function for the thrust-propelled system Vx ∈ C1(R≥0 × Ωx,R≥0)
(the one in (2.2.43) is a possible one, if the control law (2.2.47) is chosen). Consider
then the vector field

fb(t, x̃) = Proj(ΦT (x,uclx (t,x))∂Vx(t,x)
∂x

, b̂) , (2.4.26)

whose choice will be clear next (Proj as defined in [55]). Consider then the Lyapunov
function Vx̃ ∈ C1(R≥0 ×Ωx̃,R≥0), defined as

Vx̃(t, x̃) = Vx(t,x) + 1
kb

(b − b̂)
2

, (2.4.27)

where kb > 0. Given (2.4.25) and (2.4.26), it follows that

Wx̃(t, x̃) =Wx(t,x) − kb(b − b̂)(fb(t, x̃) −ΦT (x,uclx (t,x))∂Vx(t,x)
∂x

) ≥ 0. (2.4.28)

We may then use the Lyapunov function in (2.4.27) to conclude that limt→∞Wx(t,x(t)) =
0, and conclude asymptotic tracking of the desired position trajectory by the load.

2.4.6 Simulations
Consider a quadrotor with mass M = 1.442 kg, a load with mass m = 0.144 kg, a
cable with length L = 0.5 m, and a disturbance b = 0.2 N. Consider the control
law (2.2.53) with σ(s) = 0.25 s√

1+s2
, ρ(s) = 0.70 s√

1+s2
, k = 1 and Ω(⋅) as an odd

function and as the solution to the differential equation Ω′′′(s) = 0 for s ∈ [0,1),
Ω′′′(s) = s − 1 for s ∈ [1,2] and Ω′′′(s) = 1 for s > 2 and initial conditions Ω(0) = 0,
Ω′(0) = 1 and Ω′′(0) = 0. Consider the control law uclx (⋅, ⋅), in (2.2.47), with gains
vθ = 50, kθ = 1, vω = 50, kω = 1; and the estimator vector field, in (2.4.25), with kb = 5
and ε = 0.3. For these choices, we provide a simulation in Fig. 2.10, as a solution
of (2.4.5) with z(0) = (0,0, Le3,0) ∈ Ωz. In Fig. 2.10a, one can visualize in blue the
desired trajectory, namely one with the load describing a circular motion of 1 m of
radius, and an angular velocity of 0.1 rev/sec; and in black, the actual trajectory of
the quadrotor-load system, where convergence to the desired trajectory is verified. In
Fig. 2.10b, the position tracking error is presented, and its convergence to 0 indicates
convergence of the system’s trajectory to the desired trajectory. In Fig. 2.10d, the
cable’s unit vector and its equilibrium are presented, and n(⋅) converges to its
equilibrium n⋆(⋅) as defined in (2.2.23). Finally, in Fig. 2.10f, the thrust input, U , is

38 Thrust propelled systems

0.5

y (m)

0
-0.5

-11
x (m)

0

-1

1

0.5

1.5

0

z
(m

)

(a) Trajectories
Time (s)

0 5 10 15

(m
)

-1

-0.8

-0.6

-0.4

-0.2

0

e1

e2

e3

(b) Position tracking error
Time (s)

0 5 10 15

(m
/
s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

v1

v2

v3

(c) Velocity tracking error

Time (s)
0 5 10 15

-0.2

0

0.2

0.4

0.6

0.8

1

n1

n
⋆

1

n2

n
⋆

2

n3

n
⋆

3

(d) Unit vectors n(t) in
state and n⋆

(t) in (2.2.23)

Time (s)
0 5 10 15

(r
a
d
/
s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

ω1

ω
⋆

1

ω2

ω
⋆

2

ω3

ω
⋆

3

(e) Angular velocities ω(t)
and ω⋆

(t) in (2.2.32)

Time (s)
0 5 10 15

-4

-2

0

2

4

6

8

10 0.5 ∗ U (N)
φ(◦)
θ(◦)

10 ∗ b̂(N)

(f) Inputs to the physical
system and disturbance es-
timate b̂(t)

Figure 2.10: Simulation for z(0) = (0,0, Le3,0) ∈ Ωz (In Fig. 2.10f, r =

(c(φ)s(θ),−s(φ), c(φ)c(φ))).

presented, and the attitude input, r, is also presented, where the attitude unit vector
has been parametrized in pitch and roll angles (recall that uz = (T, r) = uclz (x,uclx)).
The thrust input stabilizes around a value that cancels the accumulated weight of
the quadrotor and the load; while the pitch and roll oscillate around zero, since the
load is describing a circle, and therefore the cable must rotate so as to point inwards
the circular trajectory. In Fig. 2.10f, the disturbance estimate is also presented, and
it converges to the real unknown disturbance, thus canceling its effect. Preliminary
experimental results are presented in Fig.2.11, where a quadrotor-load system is
first commanded to hover over a green pen, and afterwards is commanded to hover
over a blue pen. The quadrotor was a commercial one, namely an IRIS+ from 3D
Robotics; the load weighted about 144 g; the cable had a length of approximately
0.5 m; and position measurements were obtained from a Qualisys motion capture
system. A video of this experiment is found in [56].

2.5 Load lifting stability under attitude control delay

2.5.1 Introduction

In this Section, we propose a control law with the objective of steering the load to a
desired point in the three dimensional space. Linearization around the equilibrium
is used to infer exponential stability of the same equilibrium, and conditions on the

2.5. Load lifting stability under attitude control delay 39

(a) Load hovering over green pen (b) Load hovering over blue pen
Figure 2.11: Preliminary experimental result: load hovering over green pen.

gains are provided for which exponential stability is preserved, in a similar approach
to [19]. We modify the control law so as to provide a strategy for augmenting
stability [57, Chapter 7], and we study the effect of the delay introduced by the
attitude inner loop on the stability of the equilibrium. Finally, we also include an
integral action term in the control law for compensating for battery drainage and
model mismatches, such as an unknown load mass. The proposed control law may
be used to find an initial guess for gains of control laws that are harder to tune
but that work for a larger subset of the state space domain, such as that proposed
in [54]. The results here presented are based on those in [58].

The remainder of this section is structured as follows. In subsection 2.5.3,
the problem statement is described. In subsection 2.5.4, we provide a coordinate
transformation, useful for the stability analysis. In subsection 2.5.5, a control law is
presented which provides closed loop stability. In subsection 2.5.6, we model the
quadrotor attitude inner loop, and provide conditions for which stability is preserved
under the previous control law. Finally, in subsection 2.5.7, we present illustrative
experimental results.

2.5.2 Notation
We refer the reader to the notation in Section 2.4.2. Given σ̄ > 0, we denote σ(⋅, σ̄) ∶
R ∋ x ↦ σ(x, σ̄) ∶= σ̄ x√

σ̄2+x2 ∈ (−σ̄, σ̄), as a saturation function bounded by σ̄ (i.e,
supx∈R ∣σ(x, σ̄)∣ = σ̄); we also denote σ−1(⋅, σ̄) ∶ (−σ̄, σ̄) ∋ y ↦ σ−1(y, σ̄) = σ̄ y√

σ̄2−y2 ∈ R
as the inverse mapping.

2.5.3 Problem Description
We consider the same set-up as in Section 2.4. However, in this Section we focus on
local stability results.

Problem 2.5.1. Given the vector field (2.4.6), design a control law uclz ∶ Ωx ↦
R3 such that z⋆ = (p⋆,v⋆,P⋆,V⋆) = (0,0, Le3,0) = Le9 ∈ Ωz ⊂ R12 is a (locally)
exponentially stable equilibrium of f clz ∶ Ωz ∋ z↦ f clz (x) ∶= fz(z,uclz (z)) ∈ TzΩz.

40 Thrust propelled systems

xy

z
n = n̂(θ)⇔ θ = θ̂(n)

θ φ

Figure 2.12: Geometic interpretation of (2.5.2) for n ∈ S̃2 and θ = (φ, θ) ∈ Ωθ

Remark 2.5.2. In general, we may require the load to track a trajectory of constant
velocity. Let p⋆ ∶ R≥0 ∋ t ↦ p⋆(t) ∶= p̃⋆ + ṽ⋆t ∈ R3, for some constants p̃⋆, ṽ⋆ ∈ R3.
Consider any t ∈ R, z = (p,v,P,V) ∈ Ωx and e = (p̃, ṽ, P̃, Ṽ) ∈ Ωx; and denote
φ(t, ⋅) ∶ Ωx ∋ x ↦ φ(t,z) ∈ Ωx defined as φ(t,z) = (p − p⋆(t),v − ṽ⋆,P,V), and
φ−1(t, ⋅) ∶ Ωx ∋ e ↦ φ−1(t,e) ∈ Ωx defined as φ−1(t,e) = (p̃ + p⋆(t), ṽ + ṽ⋆, P̃, Ṽ). It
holds that fx(e,u) = (∂φ(t,z)

∂t
+ ∂φ(t,z)

∂z fx(z,u))∣z=φ−1(t,e), for any e ∈ Ωx and u ∈ R3.
As such, Problem 2.5.1 may be reformulated so as to consider tracking of constant
velocity trajectories.

2.5.4 Coordinate Change

We wish to study the stability properties of z⋆ = Le9 ∈ Ωx (after a control law has
been chosen). However, it proves convenient to study the stability in a different
coordinate system, which we associate to the letter x from now. In summary, we
provide a coordinate transformation, and study the stability properties in the new
coordinate system.

To start with, let us provide some useful functions. Denote, for convenience,
Ωθ = (−π2 ,

π
2) × (−π,π), and S̃2 = S2/{(nx, ny, nz) ∈ S2 ∶ nx = 0, nz ≤ 0}. Consider the

unit vector parametrization n̂ ∶ Ωθ ∋ θ ↦ n̂(θ) ∈ S̃2 and θ̂ ∶ S̃2 ∋ n ↦ θ̂(n) ∈ Ωθ,
defined as

n̂(θ) ∶= (cos(φ) sin(θ),− sin(φ), cos(φ) cos(θ)), (2.5.1)

θ̂(n) ∶= (arctan(eT1 n
eT3 n

) ,−arcsin(eT2 n)) , (2.5.2)

where θ = (φ, θ) ∈ Ωθ. Figure 2.12 illustrates geometrically the choice of angles and
the mappings (2.5.2) (in essence, we associate two angles (φ, θ) ∈ Ωθ to the cable
unit vector – see Fig. 2.9). We emphasize that n̂(02) = e3, which will allow the
equilibrium in the new coordinate system to be at zero. Consider also ω̂ ∶ Ωθ ×R2 ∋
(θ,ωθ)↦ ω̂(θ,ωθ) ∈ R3 and ωθ̂ ∶ S̃2 ×R3 ∋ (n,ω)↦ ωθ̂(n,ω) ∈ R2, defined as

ω̂(θ,ωθ) ∶= dn̂(θ)ωθ =

⎡⎢⎢⎢⎢⎢⎢⎣

− sin(φ) sin(θ) cos(φ) cos(θ)
− cos(φ) 0

− sin(φ) cos(θ) − cos(φ) sin(θ)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
ωφ

ωθ

⎤⎥⎥⎥⎦
, (2.5.3)

2.5. Load lifting stability under attitude control delay 41

ωθ̂(n,ω) ∶= dθ̂(n)S (ω)n =
⎡⎢⎢⎢⎢⎢⎣

0 −1√
1−(eT2 n)2

0
(eT3 n)

1−(eT2 n)2 0 −(eT1 n)
1−(eT2 n)2

⎤⎥⎥⎥⎥⎥⎦
S (ω)n, (2.5.4)

where θ = (φ, θ) and ωθ = (ωφ, ωθ) (later, we let θ̇ = ωθ).
We are now in position to provide the mapping between coordinates. Denote

x = (p,v,θ,ωθ) = ((px, py, pz), (vx, vy, vz), (φ, θ), (ωφ, ωθ)) ∈ Ωz, (2.5.5)
Ωz = R3 ×R3 ×Ωθ ×R2, (2.5.6)

and consider the diffeomorphism gxz ∶ Ωz ∋ z↦ gxz(z) ∈ Ωx, and gzx ∶ Ωx ∋ x ↦ gzx(x) ∈
Ωz, defined as

gxz(z) ∶= (p,v, θ̂(n̄(z)),ωθ̂(n̄(z), ω̄(z))) (2.5.7)
gzx(x) ∶= (p,v,p +Ln̂(θ),v +LS (ω̂(θ,ωθ)) n̂(θ)), (2.5.8)

with x as in (2.5.5) and z as in (2.4.1); and with n̂, θ̂ and ω̂,ωθ̂ as defined in (2.5.2)
and (2.5.3), respectively. Notice that gxz(z⋆) = 0⇔ gzx(0) = z⋆, and thus in the new
coordinate system x⋆ = 0 ∈ R10 is the equilibrium we wish to render exponentially
stable (see Problem 2.5.1). The open loop vector field in the new coordinate system
is given by

fx ∶ Ωz ×R3 ∋ (x,u)↦ fx(x,u) = dgxz (z)fz(z,u)∣z=gzx(x) ∈ R10. (2.5.9)

In the new coordinates, it follows that fx(0, (M +m)ge3) = 0, which means (as
shall be seen later) that x⋆ = 0 is an equilibrium point for the closed loop vector
field (intuition suggests that the equilibrium control input is (M +m)ge3, which
corresponds to the total weight that needs to be canceled). It is easier to study
stability properties for (2.5.9) than for (2.4.6), however, (2.5.9) is considerably
lengthier to write explicitly when compared to (2.4.6), which is why it is omitted
here.

2.5.5 Simple Control Law

We are now in position to present the control law. For convenience, we use three
subscripts {x, y, z}, with k ∈ {x, y, z} standing for the motion in the k-direction. For
each k ∈ {x, y, z}, consider then

uk ∶ R2 ∋ (p, v)↦ uk(p, v) ∶= −kp,kσ(p, σp,k) − kv,kσ(v, σv,k) ∈ R (2.5.10)

where σ(⋅, ⋅) is a saturation function (see Notation); kp,k and kv,k are positive gains
related to the position and velocity feedback, respectively; and σp,k and σv,k are
saturations related to the position and velocity feedback, respectively (note that
sup(p,v)∈R2 ∣uk(p, v)∣ = kp,kσp + kv,kσv).

42 Thrust propelled systems

Consider then the control law uclz ∶ Ωx ∋ z↦ uclz (z) ∈ R3 defined as

uclz (z) ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

Mux(eT1 P,eT1 V) +MLkθeT1 n̄(z)
Muy(eT2 P,eT2 V) +MLkθeT2 n̄(z)

(M +m)(g + uz(eT3 p,eT3 v))

⎤⎥⎥⎥⎥⎥⎥⎦

, (2.5.11)

with ux, uy and uz defined in (2.5.10) for k ∈ {x, y, z}. Given the control law (2.5.11),
the closed loop vector field becomes

f clx ∶ Ωx ∋ x ↦ f clx (x) ∶= fx(x,uclz (z))∣z=gzx(x) ∈ R10, (2.5.12)

and x⋆ = 0 is indeed an equilibrium of (2.5.12), since uclz (z⋆) = (M +m)ge3. Lineariz-
ing (2.5.12) around 010 yields the matrix A = df clx (010), which can be transformed
into a block diagonal (A is not a block diagonal matrix) via an appropriate similarity
transformation. For that purpose, consider

P ∶=[Px Py Pz]T ∈ R10×10, (2.5.13)
Px ∶=[e1 e3 ge8 ge10] ∈ R10×4, (2.5.14)
Py ∶=[e2 e4 − ge7 − ge9] ∈ R10×4, (2.5.15)
Pz ∶=[e3 e6] ∈ R10×2. (2.5.16)

It follows that PAP −1 = Ax ⊕Ay ⊕Az (see Notation), where (let h ∈ {x, y})

Az =
⎡⎢⎢⎢⎣

0 1
−kp,z −kp,z

⎤⎥⎥⎥⎦
, Ah =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

− g
L
kp,h − g

L
kv,h −(kp,h + kθ + g

L
M+m
M

) −kv,h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.5.17)

We have thus one chain of two integrators, related to the z motion of the load; and
two chains of four integrators, related to the horizontal motion of the load. Indeed,
denoting,

ξx(z) =P T

x z (2.5.15)= (px, vx, gθ, gωθ) (2.5.18)

ξy(z) =P T

y z (2.5.15)= (py, vy,−gφ,−gωφ) (2.5.19)

ξz(z) =P T

z z (2.5.15)= (pz, vz) (2.5.20)

(with z as in (2.4.1)), it follows that ż(t) = Az(t) implies that

d4ph(t)
dt4

= eT4Ahξh(z(t)) = eT4Ah [
d0ph(t)
dt0

⋯ d3ph(t)
dt3

]
T

, h ∈ {x, y}, (2.5.21)

d2pz(t)
dt2

= eT2Azξz(z(t)) = eT5Az [
d0pz(t)
dt0

d1px(t)
dt1

]
T

. (2.5.22)

2.5. Load lifting stability under attitude control delay 43

-2.0 -1.5 -1.0 -0.5 0.5
Re

1

2

3

4

5
Im

- - - Roots for kθ ∈ [−10,100]
Roots for kθ = 10

× Roots for kθ = 0
○ Roots for kθ →∞

Figure 2.13: Roots of characteristic polynomial of Ax, in (2.5.17), in the complex plane
(conjugate poles are omitted); all other constants are those provided in Section 2.5.7.

For the roots of the characteristic polynomial of Az in (2.5.17) to have negative real
part, it suffices that kp,z > 0 and kv,z > 0. For finding the location of the roots of the
characteristic polynomial of Ah in (2.5.17) w.r.t. the imaginary axis, we apply the
Routh’s criterion to (2.5.17) [57, Chapter 7], and obtain (these are the numbers in
the first column of the Routh’s table)

[1 kv,h kv,h (gL
m
M
+ kθ + kp,h) g

L
(g
L
m
M
+ kθ)k2

v,h

g
L
kp,h] , (2.5.23)

which guarantees that exponential stability is preserved for as long as kθ > − (g
L
m
M
+ kp,h)

for h ∈ {x, y} (in this case, all entries are positive). More importantly, we can look
at the roots of the characteristic polynomial of Ah (in (2.5.17)) for different values
of kθ, as done in Fig. 2.13. As inferred from that figure, increasing kθ (for example,
from 0 to 10 see Fig. 2.13) has the benefit of making the system faster, i.e., of
increasing the speed of convergence to the equilibrium. As such, kθ can be tuned so
as to augment the stability of the closed loop.

2.5.6 Attitude Control Delay
Previously, in subsection 2.5.3, we assumed that the UAV provides the requested
input without delay. However, that is not the case in a real physical system, and it is
important to study the effect of delays in the closed loop stability for the proposed
control law. From here on, we work with augmented states and use a bar notation
to denote those. Consider then the augmented state

z̄ = (z, r) ∈ Ωz × S2 =∶ Ωz̃ (2.5.24)

where r ∈ S2 is the quadrotor’s direction where input thrust is provided (see Fig. 2.9).
The state z̄ ∶ R≥0 ∋ t↦ z̄(t) ∈ Ωz̃ evolves according to

˙̄z(t) = fz̄(z̄(t),u(t)), z̄(0) ∈ Ωz̃ (2.5.25)

44 Thrust propelled systems

where

fz̄ ∶ Ωz̃ ×R3/{0} ∋ (z̄,u)↦ fz̄(z̄,u) ∶=(fz(z,uTrr), fr(r,u))

∶=(fx(z,uTrr), kθ̄Π (r) u
∥u∥) ∈ Tz̄Ωz̄, (2.5.26)

with fx as in (2.4.6), and with kθ̄ as a positive gain that relates to the delay (1
kθ̄

may be interpreted as a time constant of a first order system).
Let us provide some intuition for (2.5.26). Consider a constant r⋆ ∈ S2 and the

function V ∶ S2 ∋ r ↦ V (r) = 1 − rTr⋆ ∈ [0,2]: then, along a solution R≥0 ∋ t ↦
r(t) ∶= r0 + ∫

t

0 fr(r(τ), r⋆)τdτ = r0 + kθ̄ ∫
t

0 Π (r(τ)) r⋆dτ (for some r0 ∈ S2), it follows
that V̇ (r(t)) = −W (r(t)) where S2 ∋ r ↦W (r) ∶= −dV (r)fr(r, r⋆) = kθ̄r⋆TΠ (r) r⋆ =
kθ̄∥Π (r) r⋆∥2 = kθ̄V (r)(2 − V (r)); this suffices to conclude that V (r(⋅)) converges
to either 0 or 2. In fact, it converges to 0 as long as r0 ≠ −r⋆, and it converges
exponential fast. For a time-varying r⋆ ∶ R≥0 ↦ S2, the same conclusion follows if
ṙ(t) = ṙ⋆(t)+kθ̄Π (r(t)) r⋆, with ṙ⋆(⋅) as a feedforward term. In (2.5.26), a feedforward
term is not included, since the desired attitude at the equilibrium is constant. Thus,
loosely speaking, if kθ̄ is big and u(⋅) is slow varying, r(⋅) converges exponentially
fast to u(⋅)

∥u(⋅)∥ ; this in turn guarantees that uT (⋅)r(⋅)r(⋅) converges to u(⋅), in which
case the model in Section 2.4.3 is recovered (see (2.4.6), in page 34). Note also that
fr models the attitude inner loop of the quadrotor in (2.5.26), but there are more
ways of modeling that inner loop.

As done in previous subsection, it is convenient to work in a new coordinate
system. For that reason, denote

x̄ = (x, θ̄) = (x, (φ̄, θ̄)) ∈ Ωx̄

x as in (2.5.5)= Ωx ×Ωθ, (2.5.27)

and consider gx̄z̄ ∶ Ωz̄ ∋ z̄↦ gx̄z̄ (z̄) ∈ Ωx̄ and gz̄x̄ ∶ Ωx̄ ∋ x̄ ↦ gz̄x̄(x̄) ∈ Ωz̄ defined as

gx̄z̄ (z̄) ∶= (gxz (z), θ̂(r)), gz̄x̄(x̄) ∶= (gzx(x), n̂(θ̄)), (2.5.28)

with z̄ and x̄ as in (2.5.24) and (2.5.27), respectively; and with θ̂ and n̂ as in (2.5.2).
Geometrically, we parametrize the quadrotor unit vector r (see Fig. 2.9) by two
angles θ̄ = (φ̄, θ̄) ∈ Ωθ similarly to the parametrization of the cable unit vector n by
θ = (φ, θ) ∈ Ωθ (see Fig. 2.12)

From (2.5.28), one can construct the open loop vector field for the augmented
system, fx̄(x̄,u) (2.5.27)= dgx̄z̄ (z̄)fz̄(z̄,u)∣x̄=gx̄z̄ (z̄), for which it follows that fx̄(012, (M +
m)ge3) = 012 (and thus zero is an equilibrium).

Consider then the control law (2.5.11), which leads to the closed loop vector
field f clx̄ ∶ Ωx̄ ∋ x̄ ↦ f clx̄ (x̄) ∶= fx̄(x̄,ucl(z))∣z=gzx(x) ∈ R12 and to the linearization matrix
Ā = df clx̄ (012). Similarly to the previous subsection, consider P̄ = [P̄x P̄y P̄z]T ∈ R12×12

where

P̄x =
⎡⎢⎢⎢⎣

Px

02×4

g2

L
M+m
M

(e8 − e11)
⎤⎥⎥⎥⎦
∈ R12×5, (2.5.29)

2.5. Load lifting stability under attitude control delay 45

P̄y =
⎡⎢⎢⎢⎣

Py

02×4

− g
2

L
M+m
M

(e9 − e12)
⎤⎥⎥⎥⎦
∈ R12×5, (2.5.30)

P̄z =
⎡⎢⎢⎢⎣

Pz

02×2

⎤⎥⎥⎥⎦
∈ R12×2, (2.5.31)

for which it follows that P̄ ĀP̄ −1 = Āx ⊕ Āy ⊕ Āz, where Āz = Az and, for h ∈ {x, y},

Āh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
kθ̄eT4Ah − g

L
M+m
M

eT4 −kθ̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.32)

As such, when considering the system (2.5.26) with a delay, we have one chain of
two integrators, related to the z motion of the load (as in previous subsection);
and two chains of five integrators, related to the horizontal motion of the load (as
opposed to four, as in the previous subsection). Indeed, denoting (for brevity, we
omit for the y coordinate)

ξ̄x(z̄)
(2.5.27)= (ξx(z),

g2

L

M +m
M

(θ − θ̄)),

(2.5.19)= (px, vx, gθ, gωθ,
g2

L

M +m
M

(θ − θ̄)), (2.5.33)

it follows that ˙̄z(t) = Āz̄(t) implies that

d5px(t)
dt5

= eT5 Āxξ̄x(z̄(t)) = eT5 Āx [
d0px(t)
dt0

⋯ d4px(t)
dt4

]
T

. (2.5.34)

For finding the location of the roots of the characteristic polynomial of (2.5.32)
w.r.t. the imaginary axis, we apply the Routh’s criterion with kθ = 0, and obtain
(for convenience, denote γ = kθ̄kv,h − kp,h)

[1 kθ̄ kθ̄γ k2
θ̄γ (g

L
m
M
+ kp,h) k2

θ̄

g2

L2
m
M
γ2 g

L
kp,h] . (2.5.35)

Thus exponential stability of the equilibrium is preserved for as long as γ > 0 ⇔
kθ̄ > kp,h

kv,h
, i.e., provided that the attitude gain is big enough. Since, we do not have

control over kθ̄, preserving stability amounts to guaranteeing that kp,h
kv,h

, for h ∈ {x, y},
remains small enough.

Theorem 2.5.3. Consider the quadrotor-load system with the open loop vector
field (2.5.26), and the control law (2.5.11). Then, the equilibrium z̄⋆ = (Le9,e3) ∈
Ωz × S2 of f clz̄ (z̄) (2.5.24)= fz̄(z̄,ucl(z)) is exponentially stable if and only if kθ̄ >
maxh∈{x,y} kp,hkv,h

, i.e., iff the attitude inner loop is sufficiently fast.

46 Thrust propelled systems

Proof. Linearizing f clx̄ (x̄) = dgx̄z̄ (z̄)f clz̄ (z̄)∣z̄=gz̄x̄(x̄) around x̄⋆ = gx̄z̄ (z̄⋆) = 012 yields the
matrix (2.5.32) with kθ = 0. Exponential stability of the equilibrium follows from
the Routh’s criterion inferred from (2.5.35).

If we apply the Routh’s criterion for an arbitrary kθ, we obtain

[1 kθ̄ kθ̄(kθ̄kv,h − (kp,h + kθ)) γ1 γ2
g
L
kp,h] (2.5.36)

where γ1 and γ2 are quadratic expressions on kθ and kθ̄, and which we omit for
brevity. Thus the equilibrium is exponentially stable only if

kθ̄ > (kp,h + kθ)k−1
v,h⇔ kθ < kθ̄kv,h − kp,h. (2.5.37)

The previous condition is necessary, but not sufficient: for sufficiency, positiveness
of all entries in (2.5.36) must be guaranteed.

Recall that the control law (2.5.11) sufficed to render the equilibrium stable, and
the same conclusion holds as long as kθ̄ > kp,h

kv,h
. As such, a large proportional gain

(w.r.t. the derivative gain) requires a fast attitude inner loop.
In Section 2.5.5, it was deduced that choosing a positive kθ augmented the closed

loop stability; however, notice from (2.5.37) that a larger kθ requires a larger kθ̄, and,
consequently, for a slow attitude inner loop (small kθ̄), choosing a large positive kθ,
instead of augmenting stability, may actually render the equilibrium unstable.

In Fig. 2.14a, the roots of the characteristic polynomial of (2.5.32) are plotted for
different delays and for kθ ∈ [−40, 37] s−2. For example, for kθ̄ = 1

0.6 s−1, kθ = −1.5s−2 < 0
is better than kθ = 0s−2 in the sense that it provides a better distribution of roots.
In fact, for each kθ̄ > 0 there is an interval for kθ where exponential stability is
preserved. In Fig. 2.14b, the roots are plotted for different kθ and for kθ̄ ∈ [1

10 ,10]s−1.
As can be seen, choosing a positive kθ may actually render the equilibrium unstable
(see Fig. 2.14b with kθ = 2s−2). As expected, notice that the equilibrium becomes
unstable when kθ̄ → 0, i.e., when the attitude inner loop becomes too slow.

Remark 2.5.4. Adding an integral action adds robustness again disturbances and
model mismatches, such as an unknown load that is picked-up by the aerial vehicle.
In [58], an integral action term is included in the control law, and the stability of
the equilibrium is still guaranteed.

2.5.7 Experimental Results
For the experiments, a commercial quadrotor was used, namely an IRIS+ from
3D Robotics, weighting M = 1.442 kg, with a maximum payload of 0.4 kg. For the
load, a wood block weighting m = 0.145 kg (corresponding to ≈ 10% of the UAV’s
weight) was chosen, attached to the UAV by a cable of L = 0.9 m. The commands
for controlling the quadrotor are processed on a ground station, developed in a
ROS environment, and sent to the on-board autopilot, which allows for remotely
controlling the aerial vehicle through a desired three dimensional force input. A

2.5. Load lifting stability under attitude control delay 47

-1.5 -1.0 -0.5 0.5
Re

1

2

3

4

Im

- - - Roots for kθ̄ = 1
0.3s

- - - Roots for kθ̄ = 1
0.6s

- - - Roots for kθ̄ = 1
1.2s

Roots for kθ = −1.5s−2

× Roots for kθ = 0
○ Roots for kθ̄ →∞

(a) For kθ ∈ [−40,37] and kω = 0.

-1.5 -1.0 -0.5 0.5
Re

1

2

3

4

Im

- - - Roots for kθ = 0s−2

- - - Roots for kθ = −2s−2

- - - Roots for kθ = 2s−2

Roots for kθ̄ = 1
0.6s

× Roots for kθ̄ = 0
○ Roots for kθ̄ →∞

(b) For kθ̄ ∈ [0.1,10]s−1.
Figure 2.14: Roots of characteristic polynomial of Āx, in (2.5.32), in the complex plane
(conjugate poles are omitted, and all other constants are those in subsection 2.5.7.).

wireless radio communication between ground station and autopilot is established
through a telemetry radio, using a MAVLink protocol that directly overrides the
signals sent from the radio transmitter. The quadrotor’s and load’s position and
velocity are estimated by 12 cameras from a Qualisys motion capture system.

The control law (2.5.11) is applied, with ki,z = 0.25s−3 and σi,z = 0.5ms−2 (these
are gains for the integral action [58]); with kθ = −2s−2; with kp,x = kp,y = 3.5s−2, kv,x =
kv,y = 5.5s−1, σp,x = σp,y = 0.5m and σv,x = σv,y = 0.5ms−1; with kp,z = 1.0s−2, kv,z =
1.2s−1, σp,z = 0.5m and σv,z = 0.5ms−1 (see (2.5.11)). We provide three experiments,
in Figs. 2.15–2.17.

In Fig 2.15, the load is required to hover at p̃⋆ = 0.5e3m (see Remark 2.5.2), and
the control law is tested for robustness with respect to disturbances; first, the load is
disturbed in the x-direction (at t ≈ 8s); then disturbed in the y-direction (at t ≈ 18s);
and, finally, the UAV is disturbed in the x-direction (at t ≈ 28s). The effect of these
disturbances is seen in all Figs. 2.15a–2.15d. All these disturbances are well damped,
as seen in Fig. 2.15c. In Fig 2.16, the load is required to hover at the consecutive
points p̃⋆ ∈ {(0,0,0.5), (1.2,1.2,0.5), (1.2,−1.2,0.5), (−1.2,−1.2,0.5), (−1.2,1.2,0.5),
(0,0,0.5)}m. There is an interval of ten seconds between consecutive points, which
correspond to the corners of a square (see Fig. 2.16a). The tracking performance is
shown in Fig. 2.16b, and the larger standard deviation of the cable angles is around
3.2○ – see Fig. 2.16c. In Fig 2.17, the load is required to describe a circle on the
horizontal plane centered around 0.5e3m, with radius of 1.04m and at 0.1rev/s; this,
in turn, implies that the quadrotor is required to describe a circle on the horizontal
plane centered around 1.4e3m, with radius of 1m and at 0.1rev/s. The tracking
performance is shown in Fig. 2.17b, and the larger standard deviation of the cable
angles is around 5○ – see Fig. 2.16c; perfect tracking of the circle would lead to a
standard deviation of 1.6○.

48 Thrust propelled systems

y (m)

0.5

0

-0.5
0.40.20

x (m)

-0.2-0.4-0.6

1.4

1.2

1

0.8

0.6

0.4

z
(m

)

(a) Trajectory of system
UAV+load.

Time (s)
0 10 20 30 40 50

(m
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

px

py

pz

(b) Load position, p =

(px, py, pz).

Time (s)
0 10 20 30 40 50

D
eg
re
es

(◦
)

-40

-30

-20

-10

0

10

20

30

40

φ of cable (σ(φ)=5.6◦)
θ of cable (σ(θ)=5.7◦)

(c) Cable angles, θ̂(n(x))

(see (2.5.2) and 2.4.7).

Time (s)
0 10 20 30 40 50

C
on

tr
ol

In
p
u
ts

(N
)

-5

0

5

10

15

20

ucl,3
x

ucl,3
y

ucl,3
z

(d) Control input, ucl(⋅)
(see (2.5.11)).

Figure 2.15: Impulse disturbances on UAV+load system (disturbance on load in the
x and y directions, at t ≈ 8s and t ≈ 18s; and disturbance on UAV in the x-direction,
at t ≈ 27s).

2.6 Decoupled design of controllers for aerial manipulation
with quadrotors

2.6.1 Introduction

When combining a UAV and a robotic manipulator, their dynamics are coupled,
and controllers that consider the complete dynamics are found. In [59], cartesian
impedance control is studied, while [60] designs a passivity-based controller. Robust
and/or adaptive controllers are developed in [61, 62] that control the motion of a
multirotor while the manipulator is driven to a desired position carrying a load.

In this work, we also consider the complete quadrotor-manipulator system’s
dynamics in the control design and analysis. We provide a change of coordinates
which splits the system into two decoupled subsystems, one concerning the dynamics
of the center of mass of the quadrotor-manipulator system; and another concerning
the manipulator’s orientation dynamics. These subsystems’ dynamics are similar to
those of quadrotor’s dynamics, and we propose controllers that guarantee that the
quadrotor tracks a desired position trajectory, while the manipulator’s orientation
tracks a desired orientation. Finally, we also consider an input disturbance on the
thrust of the quadrotor, and one of our main contributions concerns a disturbance

2.6. Decoupled design of controllers for aerial manipulation 49

y (m)

1

0.5

0

-0.5

-1
1

0.5

x (m)

0
-0.5

-1

0.2

0.4

0.6

0.8

1

1.2

1.4

z
(m

)

(a) Trajectory of system
UAV+load.

Time (s)
0 10 20 30 40 50

(m
)

-1.5

-1

-0.5

0

0.5

1

1.5

px

py

pz

(b) Load position, p =

(px, py, pz).

Time (s)
0 10 20 30 40 50

D
eg
re
es

(◦
)

-15

-10

-5

0

5

10

15

φ of cable (σ(φ)=2.4◦)
θ of cable (σ(θ)=3.2◦)

(c) Cable angles, θ̂(n(x))

(see (2.5.2) and 2.4.7).

Time (s)
0 10 20 30 40 50

C
on

tr
ol

In
p
u
ts

(N
)

-5

0

5

10

15

20

ucl,3
x

ucl,3
y

ucl,3
z

(d) Control input, ucl(⋅)
(see (2.5.11)).

Figure 2.16: System UAV+load, with load required to move to the corners of a
square of length 1.2m, at intervals of 10s.

y (m)

1

0

-1
10.5

x (m)

0-0.5-1

1.4

1.2

1

0.8

0.6

0.4

z
(m

)

(a) Trajectory of system
UAV+load.

Time (s)
0 5 10 15 20 25 30 35 40

(m
)

-1.5

-1

-0.5

0

0.5

1

1.5

px

py

pz

(b) Load position, p =

(px, py, pz).

Time (s)
0 5 10 15 20 25 30 35 40

D
eg
re
es

(◦
)

-20

-15

-10

-5

0

5

10

15

20

φ of cable (σ(φ)=4.8◦)
θ of cable (σ(θ)=4.2◦)

(c) Cable angles, θ̂(n(x))

(see (2.5.2) and 2.4.7).

Time (s)
0 5 10 15 20 25 30 35 40

C
on

tr
ol

In
p
u
ts

(N
)

-5

0

5

10

15

20

ucl,3
x

ucl,3
y

ucl,3
z

(d) Control input, ucl(⋅)
(see (2.5.11)).

Figure 2.17: System UAV+load, with load required to describe a circle of radius
1.04m, and at 0.1rev/s.

50 Thrust propelled systems

estimate method that guarantees that the previous tracking objectives are still
accomplished; and where the disturbance estimate depends on the position tracking
error and the orientation tracking error according to different gains, owing to the
decoupling. The results here presented are based on those in [15].

The remainder of this section is structured as follows. In subsection 2.6.3, we
provide a model of the quadrotor-manipulator system, and we describe the tracking
problem. In subsections 2.6.4, we provide the diffeomorphism used in converting
the system into two separate thrust propelled systems. Finally, in subsection 2.6.5,
simulations and experiments are provided that validate the proposed algorithms.

2.6.2 Notation

For brevity, denote quadrotor by UAV.
M,m > 0 UAV’s and load’s masses
L > 0 Manipulator’s length
P,p ∈ R3 UAV’s and the load’s center of mass positions
V,v ∈ R3 UAV’s and the load’s center of mass velocities
R ∈ SO(3) UAV’s rotation matrix
r ∶=Re3 ∈ S2 UAV’s direction along which input thrust is provided
z = (p,v,P,V, r) State of the UAV-manipulator system
U ∈ R UAV’s input thrust/propelling force
$ ∈ R3 UAV’s input angular velocity, expressed in the inertial frame
τ ∈ R3 Input torque on the manipulator
uz = (U,$,τ) Input to the UAV-manipulator system

2.6.3 Modeling

Consider a quadrotor vehicle and a point mass load attached to each other by a rigid
manipulator, as illustrated in Fig. 2.18. The manipulator end-points coincide with
the quadrotor’s and the load’s center of mass. Moreover, we assume there is a ball
joint connecting the quadrotor’s center of mass and one of the manipulator’s end-
point, which overlap; and finally we assume that an input torque on the manipulator
is available. Under the absence of such an input torque, the load attached to one of
the manipulator’s end-point behaves as a slung load, that can swing with respect
to the quadrotor. When the ball joint is locked, the input torque is determined
from this constraint, and the manipulator moves rigidly with the quadrotor. Also,
notice that the manipulator imposes a kinematic constraint on the system, namely
it enforces the distance between the quadrotor’s and load’s positions to be constant
and equal to the manipulator’s length, which we assume is constant. Later, we prove
the quadrotor-manipulator system is differentially flat with respect to the system’s
center of mass and the manipulator’s orientation. With that in mind, the focus of

2.6. Decoupled design of controllers for aerial manipulation 51

rr

e1 e2

e3

fIg

n

P

p

pcm

-mge3

-Mge3

S(n) τ
L

Tn

Ur

-S(n) τ
L

-Tn

$

Figure 2.18: Modeling of quadrotor-manipulator system

this paper is on providing closed-loop control laws that guarantee that the system’s
center of mass follows a desired trajectory and that the manipulator’s orientation
follows a desired orientation.

Consider the constants and variables as defined in the previous Notation subsec-
tion. Denote then

z =(p,v,P,V, r) ∈ Ωz (2.6.1)
uz =(U,$,τ) ∈ R ×R3 ×R3 =∶ Uz (2.6.2)

where z and uz stand for the state of and input to the quadrotor-manipulator system
and

Ωz ∶= {(p,v,P,V, r) ∈ (R3)5 ∶ rTr = 1, (P − p)T (P − p) = L, (V − v)T (P − p) = 0}, (2.6.3)
TzΩz ∶= {(δp, δv, δP, δV, δr) ∈ (R3)5 ∶ rT δr = 0, (δP − δp)T (P − p) = 0, (2.6.4)

(δV − δv)T (P − p) + (V − v)T (δP − δp) = 0}, (2.6.5)

where Ωz is the state set and TzΩz the tangent space to Ωz at z ∈ Ωz. Given an
appropriate uz = (U,$,τ) ∶ R≥0 ↦ Uz, we consider the trajectory z ∶ R≥0 ↦ Ωz

evolving according to the dynamics

ż(t) = fz(z(t),uz(t)),z(0) ∈ Ωz, (2.6.6)

where fz ∶ Ωz × Uz ∋ (z,uz)↦ fz(z,uz) ∈ TzΩz is given by

fz(z,uz) ∶= (v,a(z,uz),V,A(z,uz),S ($) r), (2.6.7)

a(z,uz) ∶=
T (z,uz + be1)

m
n̄(z) + S (n̄(z)) τ

mL
− ge3, (2.6.8)

A(z,uz) ∶=
U + b
M

r − T (z,uz + be1)
M

n̄(z) − S (n̄(z)) τ

ML
− ge3, (2.6.9)

52 Thrust propelled systems

where g is the acceleration due to gravity, and where n̄ ∶ Ωz ∋ z ↦ n̄(z) ∈ S2,
ω̄ ∶ Ωz ∋ z↦ ω̄(z) ∈ R3 and T ∶ Ωz × Uz ∋ (z,uz)↦ T (z,uz) ∈ R are defined as

n̄(z) = P − p
∥P − p∥ = P − p

L
, ω̄(z) ∶= S (n̄(z)) V − v

L
, (2.6.10)

T (z,uz) =
m

M +m (UrT n̄(z) + M
L

∥V − v∥2) , (2.6.11)

and where b ∈ R is a constant unknown disturbance acting on the thrust input
(and e1 ∈ R7). The functions a and A are related to the loads’ and the quarotors
acceleration; the functions n̄ and ω̄ in (2.6.10) are related with the manipulator’s
orientation and angular velocity, respectively; and, finally, the function T in (2.6.11)
is related with the tension/compression exerted on the manipulator.

Finding the vector field (2.6.7) may be accomplished by means of the Euler-
Lagrange formalism. Here, however, that vector field was derived by considering
the net force in each center of mass, where the tension is taken as an internal force.
This internal force is then found by guaranteeing that

fz(z,uz) ∈ TzΩz∀(z,uz) ∈ Ωz × Uz, (2.6.12)

which is indeed the case. This guarantess that Ωz is in fact positively invariant, i.e.,
the tension in the manipulator guarantees that the distance between the quadrotor’s
and the load’s center of mass remains constant and equal to the manipulator’s
length. Notice also that the tension on the manipulator does not depend on the
torque input, since this torque does not attempt to drive the quadrotor away from
the load; rather it only attempts to make the quadrotor and load rotate around
each other.

Problem 2.6.1. Given the system (2.6.6), a desired trajectory P⋆ ∶ R≥0 ↦ R3 and
a desired orientation n̄⋆ ∶ R≥0 ↦ S2, design uz = (U,$,τ) ∶ R≥0 ↦ Uz, such that
lim
t→∞

(P(t) −P⋆(t)) = 0 and lim
t→∞

(n̄(t) − n̄⋆(t)) = 0 along solutions of (2.6.6).

Problem 2.6.1 can be restated as finding a control law, such that the quadrotor
follows a desired trajectory, while the manipulator follows a desired orientation.
For example, we may want the quadrotor to describe a circular motion, while the
manipulator is always pointing downwards. As shall be seen later, Problem 2.6.1
can also be restated as finding a control law, such that the center of mass of the
quadrotor-manipulator system follows a desired trajectory given by P⋆ −L m

M+m n̄⋆,
while the manipulator follows the desired orientation given by n̄⋆.

2.6.4 Control Strategy

Coordinate transformation

In this subsection, we provide a coordinate transformation between the state as
defined in Section 2.6.3 and the state of two separate thrust propelled systems. This

2.6. Decoupled design of controllers for aerial manipulation 53

coordinate transformation has a clear physical interpretation and it corresponds to
the diffeomorphism as explained in the beginning of the chapter (see Fig. 2.2, in
page 14). For that purpose, consider pcm ∶ Ωz ∋ z↦ pcm(z) ∈ R3 and vcm ∶ Ωz ∋ z↦
vcm(z) ∈ R3 defined as

pcm(z) = MP +mp
M +m ,vcm(z) = MV +mv

M +m , (2.6.13)

where, physically, pcm(z) and vcm(z) stand, respectively, for the position and velocity
of the center of mass of the quadrotor-manipulator system with state z ∈ Ωz (see
Fig. 2.18). It follows from (2.6.13) and (2.6.10) that, for z as in (2.6.1),

P = pcm(z) + n̄(z) Lm
M+m ⇔ pcm(z) = P − Lm

M+m n̄(z), (2.6.14)
p = pcm(z) − n̄(z) LM

M+m ⇔ pcm(z) = p + Lm
M+m n̄(z). (2.6.15)

Equation (2.6.14) motivates the definition p⋆
cm ∶ R≥0 ∋ t ↦ p⋆

cm(t) ∶= P⋆(t) −
Lm
M+mn⋆(t) ∈ R3 as the desired position trajectory for the system’s center of mass.

Denote then

x1 = (e,υ, r) ∈ R3 ×R3 × S2 =∶ Ωx1 (2.6.16)
x2 = (n,ω) ∈ {(ñ, ω̃) ∈ S2 ×R3 ∶ ω̃T ñ = 0} =∶ Ωx2 (2.6.17)
x = (x1,x2) ∈ Ωx ∶= Ωx1 ×Ωx2 (2.6.18)

where x1 and x2 are the states of the two decoupled systems we obtain after
considering the diffeomorphism presented next. Physically, e and υ correspond to
the position and velocity tracking error of the center of mass, while r is still the
quadrotor direction along which thrust is provided; on the other hand, n and ω
correspond to the manipulator unit vector and angular velocity. Consider then, for
each positive time instant t, the diffeomorphism gxz (t, ⋅) ∶ Ωz ∋ z ↦ gxz (t,z) ∈ Ωx –
with gzx(t, ⋅) ∶= (gxz)−1(t,) ∶ Ωx ∋ x ↦ gzx(t,x) ∈ Ωz – defined as

gxz (t,z) ∶=(gx1
z (t,z), gx2

z (z)) (2.6.19)
∶=((pcm(z) − p⋆(0)

cm (t),vcm(z) − p⋆(1)
cm (t), r), (n̄(z), ω̄(z))), (2.6.20)

and

gzx(t,x) ∶= (e + p⋆(0)
cm (t) − n M

M +m,υ + p⋆(1)
cm (t) − S (ω)n M

M +m,

e + p⋆(0)
cm (t) + n m

M +m,υ + p⋆(1)
cm (t) + S (ω)n m

M +m, r). (2.6.21)

Compare the map gzx as in (2.6.21) and z as in (2.6.1), and recall the meaning of x:
this should provide some intuition for (2.6.21). Finally, denote

ux1 = (u,$) ∈ R ×R3 (2.6.22)
ux ∶= (ux1 ,ux2) ∈ R

7 =∶ Ux (2.6.23)

54 Thrust propelled systems

where ux1 and ux2 correspond to the input of the systems with states x1 and x2,
respectively. Finally, define uclz ∶ Ωx × Ux ∋ (x,ux)↦ uclz (x,ux) ∈ Uz as

uclz (x,ux) ∶= ((M +m)u,$, L2 Mm

M +mS (n)(α − (M +m)u
LM

r)) , (2.6.24)

which provides the necessary input transformation, as illustrated in Fig. 2.2. It then
follows, from straightforward calculations, that

fx(t,x,ux) ∶= (∂t̄gxz(t̄,z)∣t̄=t + ∂z̄gxz(t, z̄)∣z̄=zfz(z,uz)) ∣z=gzx(t,x),uz=uclz (x,ux)

=((υ, ur − (ge3 + p⋆(2)
cm (t)),S ($) r), (S (ω)n,S (n)α))+

(0, r
M +m,0,0,S (n) , r

LM
) b

=∶(fx1(t,x1,ux1), fx2(t,x2,ux2)) +Φ(x1)b. (2.6.25)

Attaining (2.6.25) follows from straightforward but lengthy computations [15]. Notice
now that the coordinate change in (2.6.20) and the input change in (2.6.24) lead
to a vector field (2.6.25), where the open-loop dynamics of the states x1 and x2

(see (2.6.18)) are not coupled. In fact, in the absence of a disturbance, i.e., if b = 0,
we can design control laws for ux1 and ux2 that depend only on the respective states.

In the presence of an unknown disturbance, a similar approach to that presented
in Subsetion 2.4.5 may be pursed [15], where we introduce a disturbance estimator
b̂ (and the extended state x̃ = (x, b̂) ∈ Ωx̃ ∶= Ωx ×R) and design a vector field fb̂ for
this estimator. Here we present a summary of the design steps, and we refer the
reader to [15] for details. In summary, it suffices to construct a Lyapunov function
Vx̃ ∶ R≥0 ×Ωx̃ ∋ (t, x̃)↦ Vx̃(t, x̃) ∈ R≥0 given by

Vx̃(t, x̃) = ∑
i∈{1,2}

kb̂iVxi(t,xi) +
(b̂ − b)2

2
(2.6.26)

where kb̂1 and kb̂2 are positive gains and Vx1 and Vx2 are Lyapunov functions for
which

Wxi
(t,xi) = − (∂t̄Vxi(t̄,xi)∣t̄=t + ∂x̄iVxi(t, x̄i)∣x̄i=xifxi(t,xi,u

cl

xi
(t,xi))) ≥ 0 (2.6.27)

given a control law uclxi and for i ∈ {1,2}. Similarly to as in Subsetion 2.4.5, the
disturbance estimator vector field is then chosen as

fb̂(t, x̃) = Proj (ΦT (x)∂x̄Vx̃(t, x̄)∣x̄=x̃, b̂)

= Proj(ΦT (x)(∑
i∈{1,2}

kb̂i∂x̄iVxi(t, x̄i)∣x̄i=xi) , b̂) , (2.6.28)

with Proj(⋅, ⋅) as defined in [63]. It then follows that

Wx̃(t, x̃) ∶= − (∂t̄Vx̃(t̄, x̃)∣t̄=t + ∂x̄Vx̃(t, x̄)∣x̄=x̃(fx(t,x,uclx (t,x), fb̂(t, x̃))) ,
(2.6.25),(2.6.28) = ∑

i∈{1,2}

kb̂iWxi
(t,xi) + (b − b̂) (fb̂(t, x̃) −ΦT (x)∂x̄Vx̃(t, x̄)∣x̄=x) ≥ 0.

2.6. Decoupled design of controllers for aerial manipulation 55

As such, we can invoke similar arguments as in Subsection 2.4.5 to conclude that Wx̃,
and thus Wx1 and Wx2 , converge to zero along solutions of the closed loop system.
This in turn implies that the center of mass tracks the desired position trajectory
and that the manipulator tracks the desired attitude.

Remark 2.6.2. The gain kb̂1 may be interpreted as a weight on the disturbance
estimate vector field due to the tracking error of the center of mass – associated to
x1; while the gain kb̂2 may be interpreted as a weight on the disturbance estimate
vector field due to the tracking error of the manipulator’s orientation – associated
to x2. In particular, the ratio kb̂1/kb̂2 is important, in the sense that it determines
how more/less important the tracking error of the center of mass is in estimating
the disturbance than the tracking error of the manipulator’s orientation.

To summarize, the proposed control law ũclz is given by (take z̃ = (z, b̂), with z
as in (2.6.1), and where z is assumed measured at each time instant)

ũclz (t, z̃) = uclz (x,ux(t,x))∣x=gxz (t,z) − b̂e1, (2.6.29)
uclx (t,x) = (uclx1

(t,x1),uclx2
(t,x2)), (2.6.30)

˙̂
b = fb̂(t, x̃)∣x̃=(x,b̂)=(gxz (t,z),b̂)

, b̂(0) = 0, (2.6.31)

which is a dynamic controller, not a static one.

2.6.5 Simulations and Experiments
In this section, we present a simulation and two experiments that validate the
proposed algorithms.

2.6.6 Simulation
Consider a quadrotor with mass M = 1.442 kg, a load with mass m = 0.35 kg, a
manipulator with length L = 0.35 m, and a disturbance b = 0.1 N. Consider the
control law uξ̄(⋅) (in [33]) with σ(s) = 0.25 s√

1+s2
, ρ(s) = 0.70 s√

1+s2
, k = 1 and Ω(⋅)

as an odd function and as the solution to the differential equation Ω′′′(s) = 1 for
s > 1 and Ω′′′(s) = 0 for 0 ≤ s ≤ 1 and initial conditions Ω(0) = 0, Ω′(0) = 1 and
Ω′′(0) = 0. Consider the control law uclx1

(⋅, ⋅), as in (2.2.47), with gains vθ = 50 and
kθ = 1; and another the control law uclx2

(⋅, ⋅), as in (2.2.47), with gains vθ = 20, kθ = 1,
vω = 20 and kω = 1. and, finally, the estimator vector field, in (2.6.28), with kb1 = 1,
kb2 = 0.05, bmax = 0.3 and ε = 0.1. For these choices, we provide a simulation in
Fig. 2.19, as a solution of (2.6.6) with z(0) = (−Le3,0,0,0,e3) ∈ Ωz. In Fig. 2.19a,
the desired trajectory is visualized in blue, specifically a quadrotor describing
a circular motion of 1 m of radius and an angular velocity of 0.2 rev/sec, and
with the manipulator describing a motion given by n⋆(t) = [0 sin(γ(t)) cos(γ(t))]
with γ(t) = π

4 cos(π5 t); while the actual trajectory of the quadrotor-manipulator
system is visualized in black, where convergence to the desired trajectory is verified.

56 Thrust propelled systems

1

x (m)

0.5

0

-0.5

-1
-1

-0.5

y (m)

0
0.5

1

1

0.8

0.6

0.4

0.2

0

-0.2

z
(m

)

(a) Trajectories
Time (s)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

‖e‖(m)
‖v‖(m/s)
arccos(rTr⋆)(◦)

(b) Position tracking error and attitude
error of quadrotor

Time (s)
0 1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

1.5

2

2.5

0.1 ∗ U(N)
ω1(rad/s)
ω2(rad/s)
ω3(rad/s)

10 ∗ b̂(N)

(c) Thrust input, angular velocity and
disturbance estimate.

Time (s)
0 1 2 3 4 5 6 7 8 9 10

-10

0

10

20

30

40

50

arccos(nT
n
⋆)(◦)

‖ω − ω⋆‖(◦/s)
10 ∗ τ(Nm)

(d) Manipulator errors and torque in-
puts.

Figure 2.19: Simulation for z(0) = (−Le3,0,0,0,e3) ∈ Ωz.

In Fig. 2.19b, the position tracking error of the quadrotor is presented, and it
converges to 0; in Fig. 2.19c, the thrust input, the quadrotor angular velocity and
the disturbance estimate are presented; notice the disturbance estimate converges
to the real unknown disturbance, namely 0.1N, thus canceling its effect. Finally, in
Fig. 2.19d, the orientation tracking error of the manipulator is presented, and it
converges to 0; the torque input, as defined in (2.6.29), is also presented.

2.6.7 Experimental Set-up and Experiments
For the experiments, a commercial quadrotor was used, namely an IRIS+ from 3D
Robotics, weighting 1.442 kg, with a maximum payload of 0.4kg. The commands for
controlling the quadrotor are processed on a ground station, developed in a ROS
environment, and sent to the on-board autopilot, which allows to remotely control
the aerial vehicle through the total thrust and the angular velocity. A wireless
radio communication between ground station and autopilot is established through a
telemetry radio, using a MAVLink protocol that directly overrides the signals sent
from the radio transmitter. The quadrotor’s pose is estimated by 12 cameras from a
Qualisys motion capture system.

Three experiments were conducted, with a manipulator rigidly attached to the
quadrotor. The manipulator consists of a rigid bar, of 0.35m of length and with a
load at the extremity of 0.355kg – for this manipulator, the center of mass of the
quadrotor-manipulator system shifts by approximately 7 cm away from the quadrotor
center of mass. For the three experiments, the controller has the same structure,

2.7. Controller for load lifting by two quadrotors 57

specifically that in (2.6.29) and the desired trajectory is the same. In the first
experiment, trajectory tracking of the center of mass of the quadrotor-manipulator
system is performed – Fig. 2.20c; in the second, trajectory tracking of the center
of mass of the quadrotor without manipulator is performed – Fig. 2.20d; and, in
the third, trajectory tracking of the center of mass of the quadrotor, but where
the manipulator is attached and where the controller is oblivious to its presence,
is performed – Fig. 2.20b. For the first two experiments, the tracking performance
and behavior is good as expected. However, for the third experiment, the tracking
performance is slightly worse, with slower convergence to the steady state and some
extra oscillations around the steady state, when compared to the previous two
experiments; in this case, the manipulator is present but it is seen as a disturbance
on the system, which explains the decrease in performance. This indicates that
considering the manipulator presence, as done in the first experiment, can benefit
the tracking performance.

A pick-and-place task experiment was also performed – Fig. 2.21. First, the
quadrotor moves over the target point – target 1, it descends and it grasps the
object at the picking position; once the object is grasped, the quadrotor goes back
to the initial altitude and it moves to the target point – target 2; at the target
point, the quadrotor descends and drops the object. When the load is grasped or
released, the controller is updated, and the center of mass is recomputed before
a new desired trajectory is set. Figure 2.21b shows that the task is successfully
accomplished. During the descent phase the robot’s actual trajectory leaves the
tolerance region in two occasions. In particular, when the vehicle is close to the
picking or dropping place, the propellers airflow causes turbulence which disturbs
the dynamics of the system. However, as seen in Figure 2.21b and Figure 2.21c,
the algorithm pauses the descent phase until the position error returns within the
tolerance region. A companion video with experiments – different runs but same
conditions as the experiments described before – is found that illustrates both this
and the previous experiment.

2.7 Controller for load lifting by two quadrotors

2.7.1 Introduction
In this Section, we focus on the problem of transporting a load in a system composed
of one load and two quadrotors, and where each quadrotor is connected to the load by
a cable of fixed length. Compared to cables, grippers and robotic arms are expensive
and mechanically complex, which motivates the study of tethered transportation.
Moreover, transportation with multiple aerial vehicles adds robustness for when one
or more team members suffers a failure, such as an actuator failure [10].

In this Section, we propose a controller that guarantees that the load asymptot-
ically tracks a desired position trajectory. While in the literature specific control
laws are found [10, 26, 32], we instead provide a general control framework that
transforms the quadrotors-load system into three decoupled subsystems. In particu-

58 Thrust propelled systems

(a) Iris+ with aluminium bar of 350g and
35cm (CM of the whole system is 7cm
away from CM of IRIS+).

Time [s]

0 30 60 90 120

P
o
s
it
io

n
 [
m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

px

p
∗

x

py

p
∗

y

pz

p
∗

z

(b) CM of quadrotor system, with ma-
nipulator attached (control oblivious to
manipulator presence).

Time [s]

0 30 60 90 120

P
o
s
it
io

n
 [
m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

px

p
∗

x

py

p
∗

y

pz

p
∗

z

(c) CM of quadrotor-manipulator sys-
tem.

Time [s]

0 30 60 90 120

P
o
s
it
io

n
 [
m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

px

p
∗

x

py

p
∗

y

pz

p
∗

z

(d) CM of quadrotor system, without
manipulator.

Figure 2.20: Position trajectory tracking of center of mass (CM) for different config-
urations, with controller defined in 2.6.29

(a) Iris+ with aluminum arm with a
1DOF revolute joint and a clamp gripper
weighting about 290g.

0.4

0.2

0

y [m]

-0.2

-0.4

Home

-0.6

Target 1

-0.8
2.5

2

1.5

x [m]

1

Target 2

0.5

0

-0.5

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

z
[m

]

(b) Blue: desired trajectory. Red: real tra-
jectory. Target 1 is the picking point, and
Target 2 is the dropping point.

Time [s]

0 30 60 90 120

P
o

s
it
io

n
 [

m
]

-2

-1

0

1

2
px

p
∗

x

py

p
∗

y

pz

p
∗

z

(c) Tracking error during flight.
Figure 2.21: Pick and place experiment

2.7. Controller for load lifting by two quadrotors 59

lar, one of these subsystems, concerning the load’s position, has dynamics similar to
those of an under-actuated aerial vehicle. This means that we may leverage different
control strategies that have been proposed in the literature for under-actuated aerial
vehicles [20]. Apart from this contribution, we also control the angle between the
cables, rather than controlling the cable links to follow designed directions [32]. This
makes it easier to design controllers that guarantee, for example, that the angle
between the cables is always lower bounded by some desired angle, chosen such
that the transporting vehicles remain safely apart from each other. Finally, we also
control the rotation around the load and around a specific axis, exploring one of the
degrees of freedom in the quadrotors-load system. The results here presented are
based on those in [64].

The remainder of this Section is structured as follows. In Subsection 2.7.3, we
describe the system’s dynamics and present the problem statement. In Subsec-
tion 2.7.4, we present and explain the design steps for the controller that transforms
the system into the three decoupled subsystems. In Subsection 2.7.5, we propose
specific controllers for those subsystems. Finally, in Subsection 2.7.6, we provide
simulations which illustrate the proposed algorithm in action.

2.7.2 Notation
Denote by D(d1, d2, d3) =D ∈ R3×3 the diagonal matrix with diagonal entries Dii =
di ∈ R for i ∈ {1,2,3}. Given functions f1, f2, g1 and g2, we denote ∑ fi ∶= f1 + f2

and ∑ figj ∶= f1g2 + f2g1.

2.7.3 Modeling and Problem Statement
Similarly to as in Section 2.4, we consider two aerial vehicles and a point mass load
attached to each quadrotor by a cable, as illustrated in Fig. 2.22. We denote by
P1,P2,p ∈ R3 the quadrotors’ and the load’s center of mass positions, respectively; by
V1,V2,v ∈ R3 the quadrotor’s and the load’s center of mass velocities, respectively;

p

P2 Pi=Mi: Quad position/mass

p=m : Load position/mass

cable
length

:=
L
2 =

kP
2 {pk

{M2ge3

{mge3

T2n2

{T2n2

U2

Ti: Cable i tension

ni =
Pi−p

Li

: Cable i direction

Ui: Force input in R
3

Ui

kUik
: Quadrotor attitude

T1n1

{T1n1

P1

U1

{M1ge3

n = w1n1+w2n2

kw1n1+w2n2k

N = w1n1 + w2n2

Figure 2.22: Modeling of quadrotors-load system

60 Thrust propelled systems

by M1,M2,m > 0 the quadrotor’s and load’s masses, respectively; and by L1, L2 > 0
the cables’ lengths. Finally, we denote by U1,U2 ∈ R3 the quadrotors’ input forces,
which we assume are inputs to the quadrotors-load system. Consider then

z = (p,v,P1,V1,P2,V2) ∈ Ωz, (2.7.1)
uz = (U1,U2) ∈ (R3)2, (2.7.2)

where

Ωz = {(p,v,P1,V1,P2,V2) ∈ (R3)6 ∶ i ∈ {1,2}, (Pi − p)T (Pi − p) = L2
i , (Vi − v)T (Pi − p) = 0}, (2.7.3)

TzΩz = {(δp, δv, δP1, δV1, δP2, δV2) ∈ (R3)6 ∶ i ∈ {1,2}, (2.7.4)
(Pi − p)T (δPi − δp) = 0, (δVi − δv)T (Pi − p) + (Vi − v)T (δPi − δp) = 0}, (2.7.5)

where TzΩz denotes the tangent space of Ωz at z ∈ Ωz. We make use of (2.7.1) to
denote the state of the quadrotors-load system, and of (2.7.2) to denote the control
input, and as illustrated in Fig 2.22. Given an appropriate uz ∶ R≥0 ↦ R6, a system’s
trajectory z ∶ R≥0 ↦ Ωz evolves according to

ż(t) = fz(z(t),uz(t)),z(0) ∈ Ωz, (2.7.6)

where fz ∶ Ωz ×R6 ∋ (z,uz)↦ fz(z,uz) ∈ TzΩz is given by

fz(z,uz) = (v,a(z,uz),V1,A1(z,uz),V2,A2(z,uz)), (2.7.7)

with z as in (2.7.1); and with the functions A1, A2 and a, as, respectively, the
quadrotors’ and the load’s acceleration (net force divided by respective mass). To be
specific, a,A1,A2 ∶ Ωz ×R6 ∋ (z,uz) ↦ a(z,uz),A1(z,uz),A2(z,uz) ∈ R3 are given
by

a(z,uz) =∑
Ti(z,uz)

m
ni(z) − ge3, (2.7.8)

Ai(z,uz) =
Ui

Mi

− Ti(z,uz)
Mi

ni(z) − ge3, i ∈ {1,2}, (2.7.9)

where g is the acceleration due to gravity, with uz as in (2.7.2), and where n1,n2 ∶
Ωz ∋ z↦ n1(z),n2(z) ∈ S2 and T1, T2 ∶ Ωz ×R6 ∋ (z,uz)↦ T1(z,uz), T2(z,uz) ∈ R are
defined as, for i ∈ {1,2},

ni(z) =
Pi − p

∥Pi − p∥
(2.7.3)= Pi − p

Li
(2.7.10)

Ti(z,uz) = eTi M−1(z)
⎡⎢⎢⎢⎢⎣

m
M1

nT1 (z)U1 +mL1∥V1 − v∥2

m
M2

nT2 (z)U2 +mL2∥V2 − v∥2

⎤⎥⎥⎥⎥⎦
, (2.7.11)

with uz as in (2.7.2) and where

M(z) =m
⎡⎢⎢⎢⎣
M−1

1 0
0 M−1

2

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
nT1 (z)
nT2 (z)

⎤⎥⎥⎥⎦
[n1(z) n2(z)] . (2.7.12)

2.7. Controller for load lifting by two quadrotors 61

We also define ω1,ω2 ∶ Ωz ∋ z↦ ω1(z),ω2(z) ∈ R3 as

ωi(z) =S (ni(z))
∂ni(z)
∂z

fz(z, ⋅) = S (ni(z))
Vi − v
Li

, (2.7.13)

for i ∈ {1,2}. Physically, the functions ni, ωi and Ti are related to the cable’s
i ∈ {1, 2} unit vector, angular velocity and tension, respectively, and as illustrated in
Fig. 2.22. Equations (2.7.8) and (2.7.9) are found by considering the net contribution
of all forces applied on the load’s and the quadrotors’ centers of mass; while (2.7.11)
is found by guaranteeing that fz(z,uz) ∈ TzΩz, for all z ∈ Ωz and uz ∈ R6, which
is indeed the case. The vector field (2.7.7) may also be derived by means of the
Euler-Lagrange formalism [30]. Let us now state the problem to be solved in this
paper.

Problem 2.7.1. Given a desired position trajectory p⋆ ∈ C4(R≥0,R3), design uz =
(U1,U2) ∶ R≥0 ↦ R6 such that limt→∞(p(t) − p⋆(t)) = 0 along trajectories of (2.7.6).

Notice that if U1,U2 ∶ R≥0 ↦ R3 are control inputs then the quadrotors themselves
are fully-actuated in the absence of tension in the cables; however, for the same inputs,
the quadrotors-load system is under-actuated. In fact, note that the quadrotors-load
system may be described by a 7th dimensional generalized coordinate, with three
coordinates for the load’s position, and two coordinates for each cable unit vector
(3+ 2× 2); while the input to the system is only 6th dimensional. On the other hand,
a system composed of three (or more) quadrotors and a load is fully actuated, since
a 9th dimensional generalized coordinate (3+ 3× 2) describes the system, while a 9th

dimensional input is available. Given that the jacobian associated to that system
has full rank, then the system is fully-actuated and impedance control strategies are
applicable. This, however, is not the case for the system considered in this paper,
which is under-actuated.

2.7.4 Control Law Design

Preliminary Definitions

Let us provide some definitions and relations, useful in the following sections. For
brevity and when stated, we use the shorthand notation

ni = ni(z),ωi = ωi(z), for i ∈ {1,2}, (2.7.14)

with ni(⋅) and ωi(⋅) as in (2.7.10) and (2.7.13), respectively. Note that for i ∈ {1, 2},

(−1)i = ±1, (−1)i+1 = ∓1, (2.7.15)

which is made use of in later sections. Let N ∶ Ωz ↦ R3 be defined as

N(z) =∑wini(z), with ∑wi = 1 and w1,w2 > 0, (2.7.16)

62 Thrust propelled systems

and corresponding to the convex combination of n1(⋅) and n2(⋅) (see Fig. 2.22).
Consider also

Ω̃z = {z ∈ Ωz ∶ nT1 (z)n2(z) /∈ {±1,−w1

w2

,−w2

w1

}} , (2.7.17)

which is a subset of Ωz and the domain of several functions presented next. Denote
then n ∶ Ω̃z ↦ S2 and ω ∶ Ω̃z ↦ R3, defined as

n(z) = N(z)
∥N(z)∥

(2.7.16)= ∑wini(z)
∥∑wini(z)∥

(2.7.18)

ω(z) =S (n(z))dn(z)fz(z, ⋅) = S (n(z)) ∑wiS (ωi(z))ni(z)
∥N(z)∥ . (2.7.19)

For brevity and when stated, we use the shorthand notation

n = n(z),N = N(z),ω = ω(z). (2.7.20)

Given (2.7.18) and (2.7.19), and along solutions of (2.7.6), it follows that ṅ(z(t)) =
S (ω(z(t)))n(z(t)). The unit vector (2.7.18) is illustrated in Fig. 2.22 and, physically,
it represents the direction along which a propelling force is applied on the load. The
coefficients w1 and w2 provide a means of distributing the load’s weight onto each
UAV; in particular, and loosely speaking, for (i, j) ∈ {(1,2), (2,1)}, if (wi,wj) ≈
(1,0), then n(⋅) (2.7.18)≈ ni(⋅) and, consequently, most of the load’s weight is carried
by the UAV i. To be more precise, consider Problem 2.7.1 with p⋆(t) = p̄ ∈ R3 for all
t ≥ 0, i.e., suppose we wish the load to be at a constant position, namely p̄. For this
scenario, choose weights w1 and w2 (as in (2.7.16)), and an angle θ̄ ∈ (0, π2); then
consider

n̄1 = (sin(−θ̄1),0, cos(−θ̄1)) ∈ S2, (2.7.21)
n̄2 = (sin(θ̄2),0, cos(θ̄2)) ∈ S2, (2.7.22)
z̄ = (p̄,0, p̄ +L1n̄1,0, p̄ +L2n̄2,0) ∈ Ωz, (2.7.23)
s.t. θ̄1 + θ̄2 = θ̄, w1 sin(θ̄1) = w2 sin(θ̄2). (2.7.24)

Then, for ūz = (Ū1, Ū2) = (M1ge3 + T̄1n̄1,M2ge3 + T̄2n̄2) with

⎡⎢⎢⎢⎣
T̄1

T̄2

⎤⎥⎥⎥⎦
=mg

⎡⎢⎢⎢⎢⎣

sin(θ̄2)
sin(θ̄1+θ̄2)

sin(θ̄1)
sin(θ̄1+θ̄2)

⎤⎥⎥⎥⎥⎦

(2.7.24)= mg
sin(θ̄1)
sin(θ̄)

⎡⎢⎢⎢⎣

w1
w2

1

⎤⎥⎥⎥⎦
(2.7.24)= mg

sin(θ̄2)
sin(θ̄)

⎡⎢⎢⎢⎣
1
w2
w1

⎤⎥⎥⎥⎦
, (2.7.25)

it follows that fz(z̄, ūz) = 0 and, consequently, z̄ is an equilibrium state and ūz an
equilibrium input. It follows from (2.7.25) that T̄1

T̄2
= w1
w2

and, thus, the ratio w1
w2

may
be chosen so as to distribute the weight of the load on each UAV in a desirable way.

2.7. Controller for load lifting by two quadrotors 63

p

P2

−M2ge3

mge3

T̄2n̄2

−T̄2n̄2

Ū2 = T̄2n̄2 +M2ge3

T̄1 = mg
sin(θ̄2)

sin(θ̄)n̄1 = (− sin(θ̄1); 0; cos(θ̄1))

T̄1n̄1

−T̄1n̄1

P1

Ū1 = T̄1n̄1 +M1ge3

−M1ge3

e3

θ̄1θ̄2

θ̄

T̄2 = mg
sin(θ̄1)

sin(θ̄)
n̄2 = (sin(θ̄2); 0; cos(θ̄2))

Equilibrium cable directions Equilibrium cable tensions
e1

e2

Figure 2.23: After choosing weights w1 and w2 (as in (2.7.16)) and an angle θ̄ ∈ (0, π2),
an equilibrium configuration exists where T̄1

T̄2
=
w1
w2

and, thus, the ratio w1
w2

regulates
the distribution of the load’s weight onto each UAV.

Denote Γ1,Γ2,Γ1
n,Γ2

n ∶ Ω̃z ↦ R3×3 defined as

Γi(z) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
tan(θ) − 1

cos(θ) 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

,Γin(z) =

⎡⎢⎢⎢⎢⎢⎢⎣

1
cos(θ) − tan(θ) 0

0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

∣θ=arccos(nTi (z)n(z)),

(2.7.26)

for i ∈ {1, 2} (the latter are well defined owing to (2.7.17) and since nTi (⋅)n(⋅) = 0⇒
nTi (⋅)nj(⋅) = −wiwj , for (i, j) ∈ {(1,2), (2,1)}). Let us know provide four orientation
frames (two for each UAV), namely R1,R2,R1

n,R2
n ∶ Ω̃z ↦ O(3) defined as

Ri(z) = [ni Π(ni)n
∥Π(ni)n∥

S(n)ni
∥S(n)ni∥] ∣n =n (z)

ni=ni(z)
, i ∈ {1,2}, (2.7.27)

Ri

n(z) = [n Π(n)ni
∥Π(n)ni∥

S(n)ni
∥S(n)ni∥] ∣n =n (z)

ni=ni(z)
, i ∈ {1,2}, (2.7.28)

illustrated in Fig. 2.24. We emphasize that, for any z ∈ Ω̃z,

Ri(z)Γi(z) =Ri

n(z)Γin(z), i ∈ {1,2}, (2.7.29)
R2
n(z) =R1

n(z)Rx(π) =R1
n(z)D(1,−1,−1). (2.7.30)

The orientation frames (2.7.27) and (2.7.28) are convenient at different design
steps, and (2.7.29) provides a conversion between the two. Notice that Ri and
Ri

n differ from a rotation around the third axis, and thus it is easy to verify that
Γi(⋅)(Γin(⋅))−1 =Rz(arccos(nTi (⋅)n(⋅)))D(1,−1,1).

64 Thrust propelled systems

p

n2 n1

n = w1n1+w2n2

‖w1n1+w2n2‖

Π(n)n1

‖Π(n)n1‖

Π(n)n2

‖Π(n)n2‖

Π(n2)n
‖Π(n2)n‖ n1

nn2

n

S(n)n2

‖S(n)n2‖=
S(n1)n2

‖S(n1)n2‖

Π(n1)n
‖Π(n1)n‖

S(n2)n1

‖S(n2)n1‖ = S(n)n1

‖S(n)n1‖

Ri
n =

[
n Π(n)ni

‖Π(n)ni‖
S(n)ni

‖S(n)ni‖

]
Ri =

[
ni

Π(ni)n
‖Π(ni)n‖

S(n)ni

‖S(n)ni‖

]

Figure 2.24: Orientation frames as defined in (2.7.27) (in green) and (2.7.28) (in
blue).

Control Law

In this section, we present the control law, and in the following sections, we explain
how the control law is designed. Let

ux = (ux̃, τθ, τψ) = ((T,τ), τθ, τψ) ∈ R ×R3 ×R ×R =∶ Ux, (2.7.31)

which corresponds to an input we design later. In particular, ux̃, composed of T and
τ , is designed such that the load tracks a desired position trajectory; τθ is designed
such that the cables remain apart by a given desired, possibly time-varying, angle
– this in turn guarantees that the cables do not overlap, and that the two UAV’s
remain apart from each other; and τψ is designed so as to control the rotation of
the two transporting quadrotors around the load. Physically, T has the dimensions
of an acceleration, while τ , τθ and τψ have the dimensions of an acceleration per
length.

We start by presenting the complete control law, and later we provide details
on how this control law is obtained. Consider then the individual control laws
Ucl

1 ,Ucl

2 ∶ Ωz ×R6 ↦ R3 defined as, for i ∈ {1,2},

Ucl

i (z,ux) =MiLiRi (z)Γi (z)αi(z,ux) (2.7.32)
(2.7.29)= MiLiRi

n(z)Γin(z)αi(z,ux), (2.7.33)

and the complete control law uclz ∶ Ωz × Ux ↦ Uz defined as

uclz (z,ux) = (Ucl

1 (z,ux),Ucl

2 (z,ux)), (2.7.34)

where (ux as in (2.7.31))

αi(z,ux) =

⎡⎢⎢⎢⎢⎢⎢⎣

[w1w2]M(z)ei
Li∥N(z)∥ T − ∥ωi(z)∥2

1
wi
τ̄θ(z,ux̃, τθ)

1
wi
τ̄ψ(z,ux̃, τψ)

⎤⎥⎥⎥⎥⎥⎥⎦

− ∥N(z)∥
2wi

S (e1)Ri,T

n (z)τ̄ (z,ux̃), (2.7.35)

2.7. Controller for load lifting by two quadrotors 65

with
τ̄ (z,ux̃) = τ − τ̃2(z, T), (2.7.36)

τ̄θ(z,ux̃, τθ) = (∑
1

winTi (z)n(z))
−1

(τθ − τ̃θ,4(z,ux̃)) , (2.7.37)

τ̄ψ(z,ux̃, τψ) = (∑
nTj (z)n(z)

wi∥S (n1(z))n2(z)∥
)
−1

(τψ − τ̃ψ,3(z,ux̃)) , (2.7.38)

and where the functions τ̃2, τ̃θ,4 and τ̃ψ,3 are omitted for brevity. In what follows, given
an appropriate ux = (T,τ , τθ, τψ) ∶ R≥0 ↦ R6, we consider trajectories z ∶ R≥0 ↦ Ωz

satisfying
ż(t) = fz(z(t),uclz (z(t),ux(t))),z(0) ∈ Ωz. (2.7.39)

Let us provide some intuition into (2.7.32)–(2.7.33), and, for that purpose,
consider a z as in (2.7.1), a ux as in (2.7.31) and i ∈ {1, 2}. We design nTi (z)Ui(z,ux)
so as to control the tension in the cables and to provide a thrust force T on the
load and along the direction n(z) – see left side in Fig. 2.25a. Notice that for
(k, γ) ∈ {(2, θ), (3, ψ)},

∑
i∈{1,2}

(−1)i+1wi
∥N(z)∥

(Ri

n(z)ek)TUcl

i (z,ux)
MiLi

(2.7.35)= (R2
n(z)ek)T τ̄(z,ux̃), (2.7.40)

∑
i∈{1,2}

wi
2

(Ri

n(z)ek)TUcl

i (z,ux)
MiLi

(2.7.35)= τ̄γ(z,ux̃, τγ). (2.7.41)

Thus, loosely speaking, it follows from (2.7.40) that we design (2.7.37) by creating
concurrent forces in the space orthogonal to (2.7.18), and producing a torque
that acts on the unit vector (2.7.18) – see right side in Fig. 2.25a. On the other
hand, it follows from (2.7.41), that we design τ̄θ by producing a differential of
forces along R1

n(z)e2
(2.7.30)= −R2

n(z)e2, which results in a torque that brings the
cables’ unit vectors closer or further apart – see right side in Fig. 2.25b. It also
follows from (2.7.41), that we design τ̄ψ by producing a differential of forces along
R1
n(z)e3

(2.7.30)= −R2
n(z)e3, which results in a torque that makes the plane spanned

by both cables rotate – see left side in Fig. 2.25b. The detailed design steps are here
omitted for brevity.

2.7.5 Control Design for ux
In this section we describe how to design the controllers for the input ux as in (2.7.31).
Consider then

x̃ = (p,v,n,ω) ∈ Ωx̃, (2.7.42)
Ωx̃ = {(p,v,n,ω) ∈ (R3)4 ∶ nTn = 1,nTω = 0}, (2.7.43)
θ = (θ,ωθ) ∈ Ωθ = [−π,π] ×R, (2.7.44)
x = (x̃,θ, ωψ) ∈ Ωx = Ωx̃ ×Ωθ ×R. (2.7.45)

66 Thrust propelled systems

p

P2

n2 n1

P1

n = w1n1+w2n2

‖w1n1+w2n2‖

p

n2 n1

n = w1n1+w2n2

‖w1n1+w2n2‖

UT
2 n2 UT

1 n1

UT
2

Π(n)n2

‖Π(n)n2‖UT
2

S(n)n2

‖S(n)n2‖ UT
1

Π(n)n1

‖Π(n)n1‖UT
1

S(n)n1

‖S(n)n1‖

(a) Input along cable direction to control tension in cables (left). Concurrent inputs along
directions orthogonal to n to control torque on n (right).

p

P2

n2 n1

P1

n = w1n1+w2n2

‖w1n1+w2n2‖

p

n2 n1

UT
2

Π(n)n2

‖Π(n)n2‖ UT
1

Π(n)n1

‖Π(n)n1‖UT
1

S(n)n1

‖S(n)n1‖UT
2

S(n)n2

‖S(n)n2‖

θ = arccos(nT
1 n2)

(b) Differential inputs along direction orthogonal to both cables to control rotation around
n (left). Differential inputs along direction orthogonal to n to control angle between cables
(right).

Figure 2.25: Intuition for control law design along different directions.

Physically, x̃ specifies the state a thrust propelled system, with error position p,
error velocity v, propelling attitude direction n and propelling attitude angular
velocity ω; θ specifies the error angular displacement, with θ as the error between
the angle formed by the cables and its desired value, and ωθ as the corresponding
error angular velocity; and finally ωψ specifies the angular velocity around the unit
vector (2.7.18). Under the proposed control law (2.7.34), these three states have
uncoupled vector fields, as verified next.

Consider then a desired position trajectory p⋆ ∈ C4(R≥0,R3), as in Problem 2.7.1,
and a desired angle trajectory between the cables θ⋆ ∈ C2(R≥0, (0, π)). Consider also,
for each time instant t ≥ 0, the mapping gxz(t, ⋅) ∶ Ωz ↦ Ωx defined as

gxz(t,z) =(gx̃z(t,z),gθz(t,z), ωψ(z)), (2.7.46)
gx̃z(t,z) =(p − p⋆(t),v − ṗ⋆(t),n(z),ω(z)), (2.7.47)
gθz(t,z) =(θ(z) − θ⋆(t), ωθ(z) − θ̇⋆(t)), (2.7.48)

with z as in (2.7.1) and the functions n, ω as in (2.7.18), (2.7.19), respectively (the
functions θ, ωθ, ωψ are found in [64]). It follows that, along trajectories of (2.7.39),
if x(t) = φ(t,z(t)) for all t ≥ 0, then

ẋ(t) =fx(t,x(t),ux(t)) (2.7.49)

2.7. Controller for load lifting by two quadrotors 67

with (next, x is as in (2.7.45) and ux is as in (2.7.31))

fx(t,x,ux) = (fx̃(t, x̃,ux̃), fθ(t,θ, τθ), fψ(τψ)) (2.7.50)
fx̃(t, x̃,ux̃) = (v, Tn − (ge3 + p̈⋆(t)),S (ω)n,Π (n)τ), (2.7.51)
fθ(t,θ, τθ) = (ωθ, θ̈⋆(t) + τθ), (2.7.52)

fωψ(τψ) = τψ, (2.7.53)

We note that the mapping in (2.7.46) is not a diffeomorphism, since, at any time
instant t ≥ 0, we cannot reconstruct a state z ∈ Ωz given a state x ∈ Ωx, but that
does not pose a problem with respect to computing (2.7.49). See Section 2.3, on the
quadrotor control.

The vector field (2.7.51) is that of a thrust propelled system, and thus the
controller in Section 2.2 may be is used. The vector field (2.7.52) is that of a double
integrator for which controllers are also found in the literature [65]. In particular,
given a desired angle trajectory θ⋆ ∈ C2(R≥0, (0, π)) and positive constants kθ and
kωθ , we choose the control law

τ clθ (t,θ) = θ̈⋆(t) − kωθωθ − kθ sin(θ), (2.7.54)

with θ as in (2.7.44). The vector field (2.7.53) is that of a single integrator for which
controllers are also found in the literature. In particular, given a desired angular
velocity ω⋆

ψ ∈ C1(R≥0,R) and a positive constant kωψ , we choose the control law

τ clψ (t, ωψ) = ω̇⋆
ψ(t) − kωψ(ωψ − ω

⋆
ψ(t)). (2.7.55)

2.7.6 Simulations
Consider two quadrotors with masses M1 =M2 = 1.442 kg; cables with lengths L1 =
L2 = 1.2 m; and a load with massm = 1.1 kg. The desired position trajectory is p⋆(t) =
(cos(0.5t), sin(0.5t), 1)m, i.e, a circular trajectory with radius of 1m and describing
a revolution every 12 s; and the desired angle between the cables is θ⋆(t) = 30○; The
weights in (2.7.16) are chosen as w1 = w2 = 1

2 . The control law uclx̃ (⋅, ⋅) is that presented
in [66], and the controllers τ clθ (⋅, ⋅) and τ clψ (⋅, ⋅) are those in (2.7.54) and (2.7.55), with
kωθ = 6, kθ = 4 and kωψ = 1. For these choices, we provide a simulation in Fig. 2.26,
as a solution of ż(t) = fz(z(t),uz(t)) with uz(t) = uclz (z(t),uclx (t,φ(t,z(t)))) and
where z(0) = (0,0, L1q(40○,40○),0, L2q(−40○,40○),0) ∈ Ωz, and with q(θ,ψ) ∶=
−(sin(θ) cos(ψ), sin(θ) sin(ψ), cos(θ)) ∈ S2. In Fig. 2.26a, one visualizes in light
gray the desired trajectory, and in dark bold the actual trajectory, which visually
suggests position tracking. In Fig. 2.26b, the position tracking error is presented,
and the convergence to 0 indicates convergence of the load’s trajectory to the
desired trajectory. In Fig. 2.26d, the angle between the cables is presented, and
one verifies convergence of this angle to the desired angle trajectory of 30○. Finally,
in Fig. 2.26c, the inputs as computed from the proposed control law – namely,
uz(t) = uclz (z(t),uclx (t,φ(t,z(t)))) – are presented.

68 Thrust propelled systems

-1-0.5

y (m)
00.511

0

-1

-2

-2.5

-1.5

-1

-0.5

0

x (m)

z
(m

)

(a) Desired and real load position trajec-
tories (light and bold gray).

Time (s)
0 2 4 6 8 10

D
is
ta
n
ce

(m
)

-1

-0.5

0

0.5

1

p
x

p
y

p
z

(b) Position tracking error.

Time (s)
0 2 4 6 8 10

N

-10

-5

0

5

10

15

20

25

30

U1x

U1Y

U1Z

U2x

U2Y

U2Z

(c) Actuation according to proposed con-
trol law.

Time (s)
0 2 4 6 8 10

D
eg
re
es

(◦
)

30

40

50

60

70

80

θ = arccos(nT

1 n2)

(d) Angles between the two cables.

Figure 2.26: Two fully actuated aerial vehicles transporting a load with the proposed
control law in (2.7.34)

Chapter 3

Attitude Synchronization

In this chapter, we consider the problem of attitude synchronization among a group
of agents in the group of unit vectors, or a group of agents in group of rotation
matrices. This is particularly motivated by applications such as those illustrated
in Fig. 3.1, where one wishes multiple cables to point in a common direction, or
equivalently one wishes multiple cables to synchronize. Firstly, in Section 3.3, we
consider agents controlled at the angular velocity level, which are similar to first order
integrators, and where the network graph is allowed to change as time progresses.
By transforming the problems of synchronization on the group of unit vectors and
of synchronization on the group rotation matrices into a common form, we are able
to study synchronization under a common framework. Secondly, in Section 3.4, we
consider agents in the group of unit vectors controlled at the torque level, which
are similar to second order integrators, and this time the network graph is assumed
static. We propose constrained torque control laws, which do not require torque on
the space orthogonal to the unit vector each agent is supposed to synchronize.

n1 ∈ S
2

nN ∈ S
2ni ∈ S

2

ni: cable i direction/unit vector

⋱
⋰

Figure 3.1: When N UAVs lift a common object attached to the latter by cables, it
might be of interest to align those cables, which corresponds to a problem of attitude
synchronization. When the cables are aligned, control techniques from Chaper 2 may
be leveraged.

69

70 Attitude Synchronization

3.1 Background

Decentralized control in multi-agent systems is a topic of active research, with
applications in large scale robotic systems. Attitude synchronization in satellite
formations is one of the relevant applications [67, 68], where the control goal is
to guarantee that a network of fully actuated rigid bodies acquires a common
attitude. Coordination of underwater vehicles in ocean exploration missions [69],
and of unmanned aerial vehicles in aerial exploration missions, may also be casted
as attitude synchronization problems.

In the literature, attitude synchronization strategies for elements in the special
orthogonal group are found in [70–78], which focus on complete attitude synchro-
nization; and in [79–89], which focus on incomplete attitude synchronization. In this
chapter, we focus on both complete and incomplete attitude synchronization. We
refer to incomplete attitude synchronization when the agents are unit vectors in the
three dimensional space; and we refer to complete attitude synchronization, when
the agents are three dimensional rotation matrices. Incomplete synchronization
represents a relevant practical problem, when the goal among multiple agents is
to share a common direction. In flocking, for example, moving along a common
direction is a requirement. Also, in a network of satellites whose antennas are to
point in a common direction, incomplete synchronization may be more important
than complete.

In [71–74, 76–78], state dependent control laws for torques are presented which
guarantee synchronization for elements in the group of three dimensional rotation
matrices, while in [82, 83, 90] state dependent control laws for torques are presented
which guarantee synchronization for elements in the group of three dimensional
unit vectors. With respect to complete attitude synchronization, different solutions
for consensus in the special orthogonal group are found [67, 72, 73, 77, 78, 91–94].
Incomplete attitude synchronization, however, has not received the same attention.
In this scenario, a rigid body has a main direction and the global objective is to
guarantee alignment of all rigid bodies’ main directions. The space orthogonal to
each main direction can be left free of actuation or controlled to accomplish some
other goals. Complete attitude synchronization requires more measurements when
compared to incomplete attitude synchronization, and it might be the case that a
rigid body is not fully actuated but rather only actuated in the space orthogonal
to a specific direction, in which case incomplete attitude synchronization is still
feasible. Incomplete attitude synchronization is also denoted synchronization on the
sphere in [80–84, 86], where the focus has been on kinematic or point mass dynamic
agents, i.e., dynamical agents without moment of inertia.

In [73], attitude control in a leader-follower network of rigid bodies has been
studied, with the special orthogonal group being parametrized with Modified Ro-
drigues Parameters. The proposed solution guarantees attitude synchronization for
connected graphs, but it requires all rigid bodies to be aware of a common and
global orientation frame. In [77, 78], a controller for a single-leader single-follower
network is proposed that guarantees global attitude synchronization at the cost of

3.1. Background 71

introducing a discontinuity in the control laws. In [91], attitude synchronization
in a leader-follower network is accomplished by designing a non-linear distributed
observer for the leader. In [76, 95], a combination of a tracking input and a syn-
chronization input is used; the tracking input adds robustness if connectivity is
lost and it is designed in the spirit of leader-following, where the leader is a virtual
one and it encapsulates a desired trajectory; however, this strategy requires all
agents to be aware of a common and global reference frame. In another line of work,
in [72, 92], attitude synchronization is accomplished without the need of a common
orientation frame among agents. Additionally, in [72], a controller for switching
and directed network topologies is proposed, and local stability of consensus in
connected graphs is guaranteed, provided that the control gain is sufficiently high.
In [67], attitude synchronization is accomplished with controllers based on behavior
based approaches and for a bidirectional ring topology. The special orthogonal
group is parametrized with quaternions, and the proposed strategy also requires
a common attitude frame among agents. In [96], a quaternion based controller
is proposed that guarantees a synchronized network of rigid bodies is a global
equilibrium configuration, provided that the network graph is acyclic. This comes
at the cost of having to design discontinuous (hybrid) controllers. A discrete time
protocol for complete synchronization of kinematic agents is found in [75], and the
notion of reshaping function is introduced there. The protocol provides almost global
convergence to a synchronized configuration, which relies on proving that all other
equilibria configurations, apart from the equilibria configuration where agents are
synchronized, are unstable. In [93], controllers for complete attitude synchronization
and for switching topologies are proposed, but this is accomplished at the kinematic
level, i.e., by controlling the agents’ angular velocity (rather than their torque). This
work is extended in [94] by providing controllers at the torque level, and similarly
to [67], stability properties rely of high gain controllers.

In [80, 81], incomplete synchronization of kinematic agents on the sphere is
studied, with a constant edge weight function for all edges. In particular, in [81],
incomplete synchronization is used for accomplishing a flocking behavior, where a
group of agents moves in a common direction. In [82], dynamic agents, which move at
constant speed on a sphere, are controlled by a state feedback control law that steers
their velocity vector so as to force the agents to attain a collective circular motion;
since the agents are mass points, the effect of the moment of inertia is not studied.
In [83], dynamic point mass agents, constrained to move on a sphere, are controlled
to form patterns on the sphere, by constructing attractive and repelling forces; in
the absence of repelling forces, synchronization is achieved. Also, the closed-loop
dynamics of these agents are invariant to rotations, or symmetry preserving, as those
in [80, 81], in the sense that two trajectories, whose initial condition – composed of
position and velocity – differs only on a rotation, are the same at each time instant
apart from the previous rotation. In Section 3.4, this property does not hold, since
our dynamic agents have a moment of inertia, unlike the agents in [80, 81, 83].

72 Attitude Synchronization

3.2 Preliminaries

3.2.1 Visualization of synchronization
Let us explain next the meaning of complete and incomplete synchronization, with
the help of meaningful illustrations.

Complete Synchronization

Consider a group of N ∈ N rotations matrices

R1,⋯,RN ∈ SO(3) = {R ∈ R3×3 ∶RTR = I,RRT = I,det(R) = 1}. (3.2.1)

We say that the agents are synchronized if they all share the same complete orienta-
tion, i.e., if R1 = ⋯ =RN , as illustrated in Fig. 3.4, in page 74, for N = 2. The term
complete synchronization is used in juxtaposition with incomplete synchronization
as described in the next subsection. In incomplete synchronization, rather than
synchronizing all three bodies axes, the agents synchronize only one body direction.

Let S̃O(3) ∶= SO(3)/{R ∈ SO(3) ∶R ≠ 2nnT − I,n ∈ S2}. For ease of visualization,
we define v ∶ S̃O(3) ∋R↦ v(R) ∈ {x ∈ R3 ∶ ∥x∥ < 1} as

v(R) ∶= θ(R)
π
S−1 (R −RT

2 sin(θ(R))) ,R ≠ I, and v(I) ∶= 0, (3.2.2)

where θ ∶ SO(3) ∋ R ↦ θ(R) ∶= arccos (tr(R)−1
2) ∈ [0, π]. As such, given a rotation

matrix R ∈ S̃O(3), we can visualize it in a sphere of unitary radius (excluding its
surface), as illustrated in Fig. 3.3. For R ∈ {R̄ ∈ SO(3) ∶ R̄ ≠ 2nnT − I,n ∈ S2}, v
is not well defined in the sense that the limit limR̄∈SO(3),R̄→R v(R) does not exist.
This is related to the fact that R = 2(+n)(+n)T − I = 2(−n)(−n)T − I, where both
+n,−n ∈ S2. In fact, under appropriate constraints (namely, on how R̄ → R), the
previous limit is either +n or −n. This corresponds to the surface of the sphere of
unitary radius, where each diametrically opposed point, represents the same rotation
matrix.

Incomplete Synchronization

Consider again a group of N rotations matrices as in (3.2.1), representing N
orientation frames (w.r.t. an unknown inertial orientation frame). Consider also
N unit vectors n̄1,⋯, n̄N ∈ S2 = {x ∈ R3 ∶ xTx = 1}, and finally the unit vectors
n1 ∶=R1n̄1 ∈ S2,⋯,nN ∶=RN n̄N ∈ S2. Intuitively, for each i ∈ {1,⋯,N}, ni represents
a direction on the ith orientation frame. While in complete synchronization it is
required that R1 = ⋯ = RN , i.e., that all orientation frames are the same, in
incomplete synchronization it is required that n1 = ⋯ = nN ⇔ R1n̄1 = ⋯ = RN n̄N .
Figures 3.4 and 3.5 illustrate the concept of incomplete synchronization for two
agents. We emphasize that (let N = 2) if n̄1 = n̄2 then R1 = R2 ⇒ n1 = n2, but

3.2. Preliminaries 73

the reverse is not true, as exemplified in Fig. 3.5. On the other hand if n̄1 ≠ n̄2

then R1 =R2 /⇒ n1 = n2, which means incomplete synchronization is not a subcase
of complete synchronization, i.e., complete synchronization does not guarantee
incomplete synchronization. See Fig. 3.4 for an illustration.

3.2.2 Output Feedback

Let us explain next the concept of decentralized output feedback in the setting of
multi-agents systems, which is illustrated in Fig. 3.6, in page 75.

Let N,m ∈ N and consider

x = (x1,⋯,xN) ∈ (Ωx)N , (3.2.3)
u = (u1,⋯,uN) ∈ (Rm)N , (3.2.4)

with x as a state, u as a input, and where Ωx is some set and TyΩx is the tangent
space of Ωx at y ∈ Ωx. Let i ∈ {1,⋯,N}. Given an appropriate ui ∶ R≥0 ↦ Rm, a
trajectory xi ∶ R≥0 ∋ t↦ xi(t) ∈ Ωx is given by

xi(t) = xi,0 + ∫
t

0
fxi(xi(τ),ui(τ))dτ,xi,0 ∈ Ωx, (3.2.5)

where fxi(xi,ui) ∈ TxiΩx for any (xi,ui) ∈ Ωx × Rm. Given an appropriate u =
(u1,⋯,uN) ∶ R≥0 ↦ (Rm)N , x = (x1,⋯,xN) ∶= R≥0 ∋ t ↦ x(t) ∈ (Ωx)N evolves
according to

ẋ(t)= (fx1(x1(t),u1(t)),⋯, fxN (xN(t),uN(t))) ,x(0) = (x1(0),⋯,xN(0)) ∈ (Ωx)N ,
=∶ Fx(x(t),u(t)),x(0) ∈ (Ωx)N , (3.2.6)

where Fx(x,u) ∈ Tx(Ωx)N ∶= Tx1Ωx ×⋯ × TxNΩx for any (x,u) ∈ (Ωx)N × (Rm)N . In
the setting of multi-agent systems, it is common to assume that the open-loop vector
field of all agents is the same (same function), but this assumption is not necessary,
as exemplified in Section 3.3 (where the agents have different moments of inertia).

Consider then the non-injective output functions

hi ∶ (Ωx)N ↦ (H)pi , i ∈ {1,⋯,N} (3.2.7)

with H as the measurement set. In the setting of multi-agent systems, hi corre-
sponds to the measurement function of agent i ∈ {1,⋯,N}, which makes pi ∈ N
measurements, and with H as the measurement set. Since, for any i ∈ {1,⋯,N},
hi is non-injective, it follows that given a measurement y ∈ hi((Ωx)N) ⊆ (H)pi one
cannot necessarily recover one single x ∈ (Ωx)N such that hi(x) = y. Consider also
the combined output function (which may be injective)

H ∶ (Ωx)N ∋ x ↦H(x) ∶= (h1(x),⋯,hN(x)) ∈ (H)p1 ×⋯ × (H)pN . (3.2.8)

74 Attitude Synchronization

(a) Two rotation matrices not syn-
chronized, i.e., R1 ≠R2

(b) Two rotation matrices synchro-
nized, i.e., R1 =R2

Figure 3.2: In complete synchronization, N agents synchronize their rotation matrices
(u1,u2 and u3 stand for the canonical basis vectors in R3).

-1

-0.5

0

0.5

1

-1
10 01 -1

Figure 3.3: Representation using (3.2.2) for rotation matrices in Fig. 3.2a.

(a) Not synchronized, n1 ≠ n2. (b) Synchronized, n1 = n2.
Figure 3.4: In incomplete synchronization,N unit vectors n1 =R1n̄1, . . . , nN =RN n̄N
are require to align with each other. In Figs. 3.4a-3.4b, n̄1 = −n̄2 =

√
3−113 (u1,u2 and

u3 stand for the canonical basis vectors of R3).

(a) Not synchronized n1 ≠

n2.
(b) Synchronized n1 = n2

(and R1 =R2)
(c) Synchronized n1 = n2

(and R1 ≠R2)
Figure 3.5: In incomplete synchronization,N unit vectors n1 =R1n̄1, . . . , nN =RN n̄N
are require to align with each other. In Figs. 3.5a–3.5c, n̄1 = n̄2 =

√
3−113 (u1,u2 and

u3 stand for the canonical basis vectors of R3).

3.2. Preliminaries 75

fx1
(x1;u1)

fxN
(xN ;uN)

...

F(x;u)

hN (x)

h1(x)

...

H(x)

uh
N (hN)

uh
1
(h1)

...

uH(H)

hN

h1

x = (x1; · · · ;xN) 2 (Ωx)
N

9y 6= z 2 (Ωx)
N : hi(y) = hi(z) 2 (H)pi

hi : (Ωx)
N 7! (H)pi

u1

uN

ucl(x) = uH(H(x))
ucl
i (x) = uh

i (hi(x))

Figure 3.6: Decentralized output feedback in the setting of multi-agents systems:
each agent i ∈ {1,⋯,N} makes pi measurements, in the measurement set H; also, the
measurement functions h1,⋯,hN are non-injective, and thus no agent i can reconstruct
the state x by measuring hi(x).

Given all the above, and in the setting of multi-agent systems, we call a function
uH ∶ (H)p1 × ⋯ × (H)pN ∋ (h1,⋯,hN) = H ↦ uH(H) ∈ (Rm)N an output feedback
control law if

uH(H) ∶= (uh1(h1),⋯,uhN(hN)) , (3.2.9)

for some uhi ∶ (H)pi ↦ Rm and for each i ∈ {1,⋯,N}. Then, given an output feedback
control law uH , x = (x1,⋯,xN) ∶= R≥0 ∋ t↦ x(t) ∈ Ωx evolves according to

ẋ(t)= (fx1(x1(t),uh1(h1(x(t)))),⋯, fxN (xN(t),uhN(hN(x(t))))) ,x(0) ∈ (Ωx)N , (3.2.10)
=∶ Fx(x(t),uH(H(x(t)))),x(0) ∈ (Ωx)N . (3.2.11)

and we call ucl ∶ (Ωx)N ∋ x ↦ ucl(x) ∶= uH(H(x)) ∈ (Rm)N , with H as in (3.2.8), a
decentralized output feedback control law if the functions (3.2.7) are non-injective.
In the next two sections, namely Section 3.3 and Section 3.4, we make use of this
concept of decentralized output feedback control law.

3.2.3 Graph Theory
In this subsection, we present some definitions and results from graph theory that
are used in following sections, and we refer the reader to [97] for further details. A

76 Attitude Synchronization

graph G = {N ,E} is said to be connected if there exists a path between any two
vertices in N . G is a tree if it is connected and it contains no cycles. An orientation
on the graph G is the assignment of a direction to an each edge (i, j) ∈ E , where each
edge vertex is either the tail or the head of the edge. For brevity, we denote N = ∣N ∣,
M = ∣E ∣ and M = {1,⋯,M}. Additionally, and for notational convenience in the
analysis that follows, consider the sets E = {(i, j) ∈ N ×N ∶ j ∈ Ni} (i.e., the set of
edges of the graph G) and Ē = {(i, j) ∈ E ∶ j > i}. For undirected network graphs, we
can construct an injective function κ̄ ∶ Ē ↦M from which it is possible to construct
a second, now surjective, function κ ∶ E ↦M, which satisfies κ(i, j) = κ̄(i, j) when
j > i and κ(i, j) = κ̄(j, i) when j < i. As such, by construction, for every (i, j) ∈ E ,
κ(i, j) = κ(j, i), since we consider undirected graphs. The function κ(⋅, ⋅) thus assigns
an edge index to every unordered pair of neighbors. The incidence matrix B ∈ RN×M

of G is such that, for every k ∈M and for (i, j) = κ̄−1(k), Bik = 1, Bjk = −1 and
Blk = 0 for all l ∈ N /{i, j}. Finally, for each edge k ∈M and (i, j) = κ̄−1(k), we
denote kn ∶= ni and k̄n ∶= nj, i.e., we identify an agent by its node index but also by
its edges’ indexes (kn if ni is the tail of edge k, and k̄n if ni is the head of edge k).

Proposition 3.2.1. If G is a tree, then BTB and (B ⊗ I)T (B ⊗ I) are positive
definite [98].

Proposition 3.2.2. If G is connected but not a tree, then the null space of the
incidence matrix, i.e., N (B), is non-empty, and it corresponds to the cycle space of
G [99, Lemma 3.2].

3.3 A common framework for attitude synchronization of
unit vectors in networks with switching topology

3.3.1 Introduction
In this Section, we consider kinematic agents and we design decentralized output
feedback control laws (see Section 3.2.2), for the agents’ angular velocities, which
are not exclusively state dependent, but are also time dependent, with the time
dependency encapsulating the case of a switching network topology.

We note that, regarding synchronization in SO(3), relevant results are found
in [86, 93, 100–102]. In e.g. [93], two control laws are proposed, one requiring
a common orientation frame among agents, and one with no such requirement.
In [86, 101–103], consensus on non-linear spaces is analyzed with the help of a
common weak non-smooth Lyapunov function, i.e., a Lyapunov function which is non-
increasing along solutions. Also, in [93], control laws which guarantee synchronization
under a switching topology are presented, under the hypothesis of a dwell time
between consecutive switches.

In the framework of this section, we relax the assumption of dwell time and
provide conditions for synchronization under arbitrary switching. Our approach
is based on the construction of a common weak non-smooth Lyapunov function

3.3. A common framework for attitude synchronization 77

for analyzing synchronization in Sn, for any n ∈ N. In order to handle the non-
smoothness of the proposed Lyapunov function, we present an invariance-like result
which does not require any dwell time assumptions for the switching dynamics
(see also [104–107] for invariance like theorems for switched systems). We propose
control laws for angular velocities of unit vectors in R3 and 3D rotation matrices
that guarantee synchronization for a network of agents with switching topology. The
control laws devised for unit vectors and rotation matrices achieve different goals,
and differ in two aspects worth emphasizing. First, controlling rotation matrices
requires more measurements when compared with controlling unit vectors; secondly,
while controlling rotation matrices requires full actuation, i.e., all body components
of the angular velocity need to be controllable, controlling unit vectors does not.
Our main contribution compared to the aforementioned literature lies in analyzing
both problems under a common framework, in order to allow for a unified stability
analysis under arbitrary switching using the same common weak Lyapunov function.
Particularly both problems are transformed into synchronization problems in Sm
for an appropriate m ∈ N. Since rotation matrices can be parametrized by unit
quaternions [108], which are unit vectors in R4, i.e., S3, these are chosen for the
analysis of the proposed control law. We also note that consensus in Rn can be
casted as a synchronization problem in Sn, and that under our framework, we do
not require a dwell time between consecutive The results here presented are based
on those in [109].

The remainder of this section is structured as follows. In Section 3.3.2, we
describe the conditions on vector fields that guarantee convergence to the consensus
set. In Section 3.3.4, we describe the common framework for analysis of both
synchronization in S2 and SO(3). In Sections 3.3.6 and 3.3.5, the control laws
for synchronization in SO(3) and S2 are presented, respectively, and the agents
dynamics are transformed into the common framework. In Section 3.3.8, asymptotic
synchronization is established for the common framework vector field. In Section 3.3.9,
illustrative simulations are presented.

3.3.2 Preliminaries
In what follows, let n,N ∈ N. Consider a time dependent switching signal σ ∶ R≥0 ↦
{1,⋯, p} =∶ P, which is continuous from the right, and x = (x1,⋯,xN) ∶ R≥0 ∋ t ↦
x(t) ∈ (Rn)N evolving according to the switched system

ẋ(t) = f(t,x(t)) =∶ fσ(t)(x(t)),x(0) ∈ RnN , (3.3.1)

where fp(⋅) ∶= (f1,p(⋅),⋯, fN,p(⋅)) ∶ (Rn)N ↦ (Rn)N for every p ∈ P. We consider a
network of N ≥ 2 agents, with n ≥ 1 the dimension of the space which the agents
belong to, and with fi,σ(⋅)(⋅) the dynamics of agent i ∈ N = {1,⋯,N}. We denote by
T = {t1, t2,⋯} the increasing sequence of switching time instants, where, ∀tk, tk+1 ∈ T ,
it holds that σ(tk) ≠ σ(tk+1), σ∣[tk,tk+1) = q ∈ P and either limk→∞ tk =∞ or tk =∞
for some k ∈ N. Since T is a countable set, the switching signal σ is constant almost
everywhere. Additionally, {fp}p∈P are assumed to be locally Lipschitz continuous,

78 Attitude Synchronization

and thus, since ∣P ∣ < ∞, f(t, ⋅) = fσ(t)(⋅) is locally Lipschitz continuous. Thus the
conditions of Theorem 54 in[110] are satisfied, which implies that the initial value
problem,

x(t) = x(0) + ∫
t

0
fσ(τ)(x(τ))dτ, (3.3.2)

has a unique solution x ∶ [0, Tmax)↦ RnN , which is an absolutely continuous function
defined on the maximal right interval [0, Tmax).

3.3.3 Assumptions on the dynamics fi,p
We now present conditions on the vector fields {fp}p∈P , which guarantee that the
solution of (3.3.2) converges to the consensus set C = {x = (x1,⋯,xN) ∈ (Rn)N ∶ x1 =
⋯ = xN}. In later sections, when studying synchronization in S2 and SO(3), given
the proposed control laws, we verify that the dynamics of all agents satisfy these
conditions, allowing us to refer to the results in this section. Moreover, for these
systems, convergence to a constant vector is guaranteed after some further analysis.

Denote, for every i ∈ N ,

vmax
i (x) = max

p∈P
xTi fi,p(x), (3.3.3)

which quantifies an upper bound on the time derivative of 1
2∥xi∥

2 along a solution
of (3.3.1), since d

dt
1
2xTi (t)xi(t) = xTi (t)fi,σ(t)(x(t)) ≤ vmax

i (x(t)), for all time instants
t where the derivative is well defined.

Also, given x = (x1,⋯,xN) ∈ (Rn)N , denoteH(x) = {i ∈ N ∶ i = arg maxj∈N (∥xj∥)}
as the set of indexes i ∈H(x) ⊆ N for which ∥xi∥ is larger than or equal to ∥xj∥ for
all j ∈ N . Given x /∈ C, assume that vmax

i (x) ≤ 0 for all i ∈H(x) and that

∀p ∈ P∃k ∈H(x) ∶ xTk fk,p(x) < 0. (3.3.4)

Condition (3.3.4) implies that, for every switching signal p ∈ P, and within the
set { 1

2∥xi∥
2}i∈H(x), one can always find an element whose time derivative along

a solution of (3.3.1), if well defined, is negative. Then, given any x /∈ C and
p ∈ P, denote H⋆(x, p) = {i ∈ H(x) ∶ xTi fi,p(x) < 0}, which due to (3.3.4) is a
non-empty subset of H(x), i.e., ∅ ≠ H⋆(x, p) ⊆ H(x). Finally, define vmax(x) ∶=
maxp∈P maxi∈H⋆(x,p) xTi fi,p(x).

From the definition ofH⋆(⋅, ⋅) it follows that vmax(x) < 0 for all x /∈ C. Additionally,
for each x /∈ C, vmax(x) quantifies an upper bound on the time derivative of 1

2∥xi∥
2

along the solution of (3.3.1), at a time instant t ≥ 0 and for i ∈H⋆(x, σ(t)). Based
on this consideration, it is shown in [111] that the time derivative of V (x) =
maxi∈N 1

2xTi xi along the solution of (3.3.1) is bounded a.e. by vmax(x) < 0, for all x =
(x1,⋯,xN) /∈ C. The latter property is central for the proof of the following theorem,
which establishes asymptotic convergence of the solution to C and constitutes the
main result of this section.

3.3. A common framework for attitude synchronization 79

Theorem 3.3.1. Consider the system (3.3.1) and assume that for certain r > 0
and all x = (x1,⋯,xN) ∈ B(r)N the following hold:

1. when x /∈ C,

a) vmax
i (x) ≤ 0∀i ∈H(x) ,

b) ∀p ∈ P∃k ∈H(x) ∶ xTk fk,p(x) < 0,

2. when x ∈ C, xTi fi,p(x) = 0∀i ∈ N , p ∈ P,

Then for each initial condition x(0) ∈ B(r)N , the set B̄(r0)N , with r0 = maxi∈N ∥xi(0)∥ <
r, is positively invariant and x(⋅), as the solution (3.3.2), converges asymptotically
to Ω = {x ∈ B̄(r0)N ∶ x1 = ⋯ = xN} = B̄(r0)N ∩ C. Moreover, given V ∶ (Rn)N ↦ R≥0,
defined as V (x) = maxi∈N 1

2xTi xi, limt→∞ V (x(t)) = V ∞ ∈ [0, V (x(0))].

The complete proof is found in [111]. Briefly, it is shown that V̇ (x(t)) ex-
ists almost everywhere and is almost always upper bounded by vmax(x(t)), i.e.,
V̇ (x(t)) ≤a.e. vmax(x(t)), where vmax(x) < 0 for x /∈ Ω = Ω0 ∩ C. It then follows that
Ω0 is positively invariant, and thus, from compactness of Ω0, that the solution
of (3.3.1) is defined for all positive times, namely Tmax =∞ [110, Proposition C.3.6].
Asymptotic convergence of x(⋅) to Ω = Ω0 ∩ C is then proved by contradiction.

Example 3.3.1. Consider σ ∶ R≥0 ↦ {1,2}, defined as σ(t ∈ [k, k + 1)) ∶= 1 for
k ∈ N even and σ(t ∈ [k, k + 1)) ∶= 2 for k ∈ N odd; and x ∶= (x1,x2,x3) ∶ R≥0 ↦
(R2)3, evolving according to ẋ(t) = fσ(t)(x) where

f1(x) = (x2 − x1 + S (x1)k,x3 − x2 + S (x2)k,x1 − x3 + S (x3)k). (3.3.5)
f2(x) = (x3 − x1 + S (x1)k,x1 − x2 + S (x2)k,x2 − x3 + S (x3)k). (3.3.6)

Then, for x = (x1,x2,x3) ∈ (R2)3/C and for all i ∈H(x),

vmax
i (x) ∶= max

p∈{1,2}
xTi fp(x) = −∥xi∥2 + xTi xj < 0, j ∈ {1,2,3}/{i}, (3.3.7)

and for x = (x1,x2,x3) ∈ C and for all i ∈ {1,2,3},

xTi fp(x1,x2,x3) = 0∀p ∈ {1,2} (3.3.8)

and thus all conditions of Theorem 3.3.1 are satisfied. Notice, however, that if
k = e3 ∈ R3, then t ∈ R≥0 ↦ 13 ⊗ (cos(t), sin(t),0) is a non-constant solution of
ẋ(t) = fσ(t)(x).

3.3.4 Synchronization
In the next subsections, we study synchronization in S2 and SO(3). We also present
decentralized output feedback control laws for the angular velocities and the closed

80 Attitude Synchronization

loop dynamics that follow from the chosen control laws. Afterwards, by means of
appropriate transformations, those dynamics are rewritten in a common form that
allows us to study synchronization in S2 and SO(3) under a common framework.
Additionally, we also show that consensus in Rn can be casted as a synchronization
problem in Sn, for any n ∈ N.

At this point, we recall Definition 1.3.3 of cone, and as illustrated in Fig. 1.3

Definition 3.3.2. Let N,n ≥ 1. We say that ν = (ν1,⋯,νN) ∈ (Sn)N belongs to an
open (closed) α-cone, for some α ∈ [0, π], if ∃ν̄ ∈ Sn ∶ ν ∈ C(α, ν̄)N(C̄(α, ν̄)N). We
say that ν is synchronized if ν1 = ⋯ = νN .

In the previous definition ν = (ν1,⋯,νN) ∈ (Sn)N stands for a group of N unit
vectors we wish to synchronize. We show later that, given the proposed control
laws, synchronization of a group of unit vectors takes place asymptotically if the
group of unit vectors is initially contained in an open α⋆-cone, where α⋆ = π

2 for
synchronization in S2 and consensus in Rn; and where α⋆ = π

4 for synchronization in
SO(3).

In the next subsections, we always consider a group of N agents, indexed by
the set N = {1,⋯,N}, operating in either S2, SO(3) or Rn. The agents’ network
is modeled as a time varying digraph, G(σ(⋅)) = {N ,E(σ(⋅))}, with N as the time
invariant vertices’ set containing the team members; with σ ∶ R≥0 ↦ {1,⋯, p} =∶ P
as the switching signal; and with G(q) and E(q) as the graph and edges’ sets
corresponding to the switching signal q ∈ P (and where ∣P ∣ ≤ 2N(N−1) since 2N(N−1)

provides an upper bound on the number of possible digraphs). We also denote
Ni(q) ⊂ N as the neighbor set of agent i ∈ N for the switching signal q ∈ P ; and, for
convenience, we also denote (with some abuse of notation) {j1,⋯, j∣Ni(q)∣} ≡ Ni(q).

In order to perform analysis under a common framework, we transform all
problems’s dynamics into a standard form, namely that presented below. Given
n ≥ 1, we denote ν = (ν1,⋯,νN) ∶ R≥0 ∋ t ↦ ν(t) ∈ (Sn)N as the state of a group of
unit vectors in Sn, which evolves according to the dynamics

ν̇(t) = f̃σ(t)(ν(t)) = (f̃1,σ(t)(ν(t)),⋯, f̃N,σ(t)(ν(t))),ν(0) ∈ (Sn)N (3.3.9)

where, for some α ∈ [0, π] and ν̄ ∈ Sn, f̃i,σ(t) ∶ (Sn)N ⊇ C(α, ν̄)N ∋ ν ↦ f̃i,σ(t)(ν) ∈
TνiS

n ⊂ Rn+1 is defined as

f̃i,σ(t)(ν) =∑j∈Ni(σ(t))
w̃ij(νi,νj)Π (νi)νj, (3.3.10)

for each i ∈ N ; i.e., ν̇i(t) = f̃i,σ(t)(ν(t)). Notice that νTi f̃i,p(ν) = 0 for all i ∈ N , p ∈ P
and ν ∈ (Sn)N , which implies that the set (Sn)N is positively invariant with respect
to (3.3.9).

The system (3.3.9)-(3.3.10) is the standard form all problems are transformed
into: for synchronization in S2, ν ∶ R≥0 ↦ (S2)N ; for synchronization in SO(3),
ν ∶ R≥0 ↦ (S3)N ; and for consensus in Rn, ν ∶ R≥0 ↦ (Sn)N .

The functions w̃ij ∶ C(α, ν̄)2 ↦ R≥0 in (3.3.10) are continuous weight functions,
for some α ∈ [π2 , π] and ν̄ ∈ Sn. Thus, given (νi,νj) ∈ C(α, ν̄)2, w̃ij(νi,νj) is the

3.3. A common framework for attitude synchronization 81

weight agent i assigns to the deviation between itself and its neighbor j, for all
i, j ∈ N (and where we emphasize that the agents are within the same cone). All
functions w̃ij are assumed to satisfy the following condition,

w̃ij(νi,νj) > 0∀(νi,νj) ∈ C(α, ν̄)2 with νTi νj ≠ 1. (3.3.11)

Thus, from continuity, it follows that the weight between two neighbors is zero if
and only if they are synchronized, though the weight may be arbitrarily small when
the neighbors are arbitrarily close to each other or when the neighbors are close the
boundaries of the domain of the weight functions.

The dependency of the dynamics (3.3.9)-(3.3.10) on time comes from the time
varying network graph, and more specifically, the time varying neighbor set of each
agent, as specified in (3.3.10).

Although the results in this section remain valid under arbitrary switching, in
practical cases the switching instants of each agent’s control law cannot accumulate
to a certain time value. In order to formulate this observation as an assumption, we
adopt Definition 2.3. in [106], and say that the switching signal σ(⋅) has an average
dwell-time τD > 0 and a chatter bound N0 ∈ N if the number of switching times of
σ(⋅) in any open finite interval (t1, t2) ⊂ R≥0 is upper bounded by N0 + t2−t1

τD
.

Assumption 3.3.3. For each agent i ∈ N , we assume its neighbor set Ni(σ) ∶ R≥0 ↦
N switches, independently from all other agents in the network, with an average
dwell-time τ iD > 0 and chatter bound N i

0 ∈ N.

As explained in more detail in the next sections, each agent i ∈ N is in charge
of providing the input that follows from composing the proposed output feedback
control laws with the measurements made at each time instant. Thus, requiring an
agent’s neighbor set to switch with an average dwell time guarantees that the agent’s
input does not experience infinite many discontinuities in any time interval of finite
length. In fact, if Assumption 3.3.3 is satisfied, then σ has an average dwell time,
and therefore it follows that the set of switching times of the network dynamics T
has zero measure in R≥0, a necessary condition in order to invoke the results from
Section 3.3.3.

Proposition 3.3.4. If each agent’s i ∈ N neighbor set Ni(σ) ∶ R≥0 ↦ N switches
with an average dwell-time τ iD and chatter bound N i

0, then the network dynam-
ics (3.3.9) has a switching signal with average dwell time τD = 1

N
mini∈N τ iD and

chatter bound N0 = N maxi∈N N i

0.

A proof is found in [111].

3.3.5 Complete synchronization in SO(3) casted as
synchronization in S3

In this section, we consider a group of N rotations matrices, and we wish to
accomplish complete synchronization, as explained and illustrated in Section 3.2.1,
page 72.

82 Attitude Synchronization

For each i ∈ N , ωi ∶ R≥0 ↦ R3 denotes the body-framed angular velocity of agent
i, which can be actuated. Each rotation matrix Ri ∶ R≥0 ∋ t↦Ri(t) ∈ SO(3) evolves
according to

Ṙi(t) = fR(Ri(t),ωi(t)),Ri(0) ∈ SO(3), (3.3.12)

and with fR ∶ SO(3) ×R3 ∋ (Ri,ωi)↦ fR(Ri,ωi) ∈ TRiSO(3) ⊂ R3×3 given by

fR(Ri,ωi) ∶=RiS (ωi) . (3.3.13)

It may be verified that fR(Ri, ⋅) ∈ TRiSO(3) for every Ri ∈ SO(3), via the same
steps as in Section 2.3 (see (2.3.7) and (2.3.8), in page 29) . If, at a time instant
t ∈ R≥0, agent i ∈ N is aware of the relative attitude between itself and another agent
j, then j ∈ Ni(σ(t)), where σ(t) encodes the network graph at time t. In particular,
for each time instant t ∈ R≥0, each agent i ∈ N is equipped with the output function
hi(t, ⋅) ∶ SO(3)N ∋R↦ hi(t,R) ∈ SO(3)∣Ni(σ(t))∣ defined as

hi(t,R) ∶= (hij1(R),⋯,hij∣Ni(σ(t))∣(R)) ∈ SO(3)∣Ni(σ(t))∣, (3.3.14)

where {j1,⋯, j∣Ni(σ(t))∣} ≡ Ni(σ(t)) and where

hij ∶ SO(3)N ∋ (R1,⋯,RN) =R↦ hij(R) ∶=RT

i Rj ∈ SO(3), (3.3.15)

for each j ∈ Ni(σ(t)). Thus, at each time instant t ∈ R≥0, agent i ∈ N measures
the ∣Ni(σ(t))∣ rotation matrices of its neighbors in its own coordinate frame. We
emphasize that the measurement as defined in (3.3.15) does not require an agent to
be aware of its own rotation matrix or its neighbors rotation matrices (recall that
these are specified in an unknown inertial orientation frame); rather it requires an
agent to measure the projection of each of its neighbors three axes onto its own
three axes.

At this point, we recall the notion of decentralized output feedback control law
as defined in Section 3.2.2, which should made clear the previous definition of output
function and the Problem statement presented next.

Problem 3.3.5. For each i ∈ N , design time-varying decentralized feedback laws
ωhi , with ωhi (t, ⋅) ∶ SO(3)∣Ni(σ(t))∣ ↦ R3 depending on the measurements hi(t, ⋅) in
(3.3.14) for each t ≥ 0, such that asymptotic synchronization of R = (R1,⋯,RN) ∶
R≥0 ↦ SO(3)N is accomplished, where Ṙi(t) = fR(Ri(t),ωhi (t,hi(t,R(t)))) for every
i ∈ N .

Problem 3.3.5 may be restated as finding a control law for each agent that
depends exclusively on the measurement function as defined in (3.3.14), and which
encodes the partial state information available to each agent at a given time instant.

Definition 3.3.6. We define the angular displacement between two rotation matrices
θ ∶ SO(3) × SO(3) ∋ (Ri,Rj)↦ θ(Ri,Rj) = arccos(tr(RTi Rj)−1

2) ∈ [0, π].

3.3. A common framework for attitude synchronization 83

For each agent i ∈ N and each t ∈ R≥0, we propose the control law ωhi (t, ⋅) ∶
SO(3)∣Ni(σ(t))∣ ∋ (hij1 ,⋯,hij∣Ni(σ(t))∣) = hi ↦ ωhi (t,hi) ∈ R3 defined as

ωhi (t,hi) ∶=∑j∈Ni(σ(t))
wij(θ(I,hij))S−1 (

hij − hTij
2

) , (3.3.16)

where wij ∶ [0, π]↦ R≥0 is continuous and satisfies

wij(θ) > 0 ∀θ ∈ (0, π]. (3.3.17)

Notice that wij corresponds to a weight agent i assigns to the displacement between
itself and its neighbor j. In addition, by defining ωcli ∶ R≥0 × SO(3)N ∋ (t,R) ↦
ωcli (t,R) ∶= ωhi (t,hi(t,R)) ∈ R3, and exploiting (3.3.14) and (3.3.15), it follows that

ωcli (t,R) =∑j∈Ni(σ(t))
wij(θ(I,RT

i Rj))S−1 (
RT

i Rj −RT

j Ri

2
)

=∑j∈Ni(σ(t))
wij(θ(Ri,Rj))S−1 (

RT

i Rj −RT

j Ri

2
) , (3.3.18)

where we have made use of the fact that θ(Ri,Rj) = θ(RRi,RRj) for anyR,Ri,Rj ∈
SO(3). We emphasize that if Assumption 3.3.3 is satisfied, then (3.3.16) (and (3.3.18))
does not have infinite many discontinuities in any time interval of finite length,
which in turn implies that it can be implemented in a practical scenario.

Recall that we wish to analyze different problems under a common framework
where agents are unit vectors. Thus, in order to cast complete synchronization
in SO(3) in the form (3.3.9), we perform a change of coordinates based on unit
quaternions. This change of variables serves only the purpose of analysis, while the
implemented control law is still that in (3.3.16). Consider then a unit quaternion
q ∈ S3 as a parametrization of a rotation matrix R ∈ SO(3), i.e, consider the
mapping R̄q ∶ S3 ∋ q ↦ R̄q(q) =R ∈ SO(3) (details on the next derivations are found
in Subsection 3.3.11). Given that there exist N rotation matrices, it is convenient to
define Rq ∶ (S3)N ∋ (q1,⋯,qN) = q ↦ Rq(q) ∶= (R̄q(q1),⋯, R̄q(qN)) ∈ SO(3)N . For
this parameterization, the control law (3.3.18) may be rewritten as

ωqi ∶ R≥0 × (S3)N ∋ (t,q)↦ ωqi (t,q) ∶= ωcli (t,Rq(q)) ∈ R3, (3.3.19)

ωqi (t,q) =∑j∈Ni(σ(t))
2qTi qjwij(arccos(2(qTi qj)2 − 1)) [I3 0]Q(q⋆i)qj, (3.3.20)

where q⋆i ∈ S3 denotes the conjugate quaternion of qi ∈ S3 and Q(⋅) is defined
in (3.3.46) (in Subsection 3.3.11). Denote

w̃ij(qi,qj) ∶= qTi qjwij(arccos(2(qTi qj)2 − 1)), (3.3.21)

and notice that this satisfies (3.3.11) for α = π
4 and for any ν̄ ∈ S3 (see (3.3.17)

and Proposition 3.3.18 in Subsection 3.3.10). Then the dynamics of each agent,

84 Attitude Synchronization

parametrized by unit quaternions, when composed with the control law (3.3.19), are
described by q̇i(t) = f̃i,σ(t)(q(t)), where f̃i,σ(t) ∶ (S3)N ∋ (q1,⋯,qN) = q ↦ f̃i,σ(t)(q) ∈
TqiS

3 is given by

f̃i,σ(t)(q) (3.3.52)∶= 1
2
Q(qi) [I3 0]

T

ωqi (t,q)

(3.3.20) =∑
j∈Ni(σ(t))

w̃ij(qi,qj)Q(qi) (I3 − e4eT4)Q(q⋆i)qj
(3.3.47) =∑

j∈Ni(σ(t))
w̃ij(qi,qj)Π (qi)qj. (3.3.22)

We have then casted this problem in the form (3.3.9) with ν = q = (q1,⋯,qN) ∈ (S3)N .

Remark 3.3.7. Consider q = (q1,⋯,qN) ∈ (S3)N and let Ri = R̄(qi) ∈ SO(3)
for every i ∈ N . If there exists q̄ ∈ S3 such that q ∈ C(π4 , q̄)N , then, by definition,
q̄Tqi > cos (π4) for all i ∈ N . Thus, it follows that θ(R̄(q̄),Ri) = arccos(2(q̄Tqi)2 −
1) ≤ arccos (2 cos2 (π4) − 1) = π

2 for all i ∈ N , i.e. all rotation matrices are π
2

close to some other rotation matrix, namely R̄(q̄). See also Proposition 3.3.21 in
Subsection 3.3.11.

Remark 3.3.8. Notice that ωqi (⋅,q) = ωqi (⋅, q̃) for any (q, q̃) ∈ {(q1,⋯,qN , q̃1,⋯,
q̃N) ∈ (S3)N × (S3)N ∶ qi = ±q̃i, i ∈ N}, owing to the fact that S3 is a double cover of
SO(3) [112]. Indeed, if qi ∈ S3 parametrizes Ri ∈ SO(3) then so does −qi ∈ S3, i.e.,
Ri = R̄q(qi) = R̄q(−qi).

3.3.6 Incomplete synchronization in SO(3) casted as
synchronization in S2

In this section, we consider again a group of N agents operating in SO(3), but
instead we wish to accomplish incomplete synchronized as explained and illustrated in
Section 3.2.1. We note that, as explained in Section 3.2.1, incomplete synchronization
is not necessarily accomplished if complete synchronization is accomplished.

Similarly to Section 3.3.5, for each i ∈ N , ωi ∶ R≥0 ↦ R3 denotes the body-framed
angular velocity of agent i, which can be actuated. Again, each rotation matrix
Ri ∶ R≥0 ∋ t ↦ Ri(t) ∈ SO(3) evolves according to Ṙi(t) = fR(Ri(t),ωi(t)) with fR
as defined in (3.3.13). Consider that each agent i ∈ N has a body direction n̄i ∈ S2 it
wishes to synchronize with the other agents, and denote for convenience

n̄ ∶=(n̄1,⋯, n̄N) ∈ (S2)N , (3.3.23)
R ∶=(R1,⋯,RN) ∈ (SO(3))N , (3.3.24)
n ∶=(n1,⋯,nN) ∶= (R1n̄1,⋯,RN n̄N) ∈ (S2)N . (3.3.25)

Thus, if we consider n = (n1,⋯,nN) ∶ R≥0 ∋ t↦ n(t) = (n1(t),⋯,nN(t)) = (R1(t)n̄1,
⋯,RN(t)n̄N) ∈ (S2)N , it follows that, for each i ∈ {1,⋯, n},

ṅi(t) = Ṙi(t)n̄i = S (Ri(t)ωi(t))ni(t) =∶ fn(R(t),ω(t), n̄i), (3.3.26)

3.3. A common framework for attitude synchronization 85

where fn ∶ SO(3) ×R3 × S2 ∋ (Ri,ωi, n̄i)↦ fn(Ri,ωi, n̄i) ∈ TRin̄iS
2 is given by

fn(Ri,ωi, n̄i) ∶= fR(Ri,ωi)n̄i = S (Riωi)Rin̄i. (3.3.27)

If, at a time instant t ∈ R≥0, agent i ∈ N is aware of the relative attitude between itself
and another agent j, then j ∈ Ni(σ(t)), where σ(t) encodes the network graph at
time instant t. Notice that agent i ∈ N is not aware of ni(⋅), since this is specified in
an unknown inertial orientation frame; instead, it is aware of its direction n̄i, fixed in
its own orientation frame, and the attitude of its neighbors’ own directions relative to
its own orientation frame. Specifically, for each time instant t ∈ R≥0, each agent i ∈ N
is equipped with the output function hi(t, ⋅) ∶ SO(3)N ∋R↦ hi(t,R) ∈ (S2)∣Ni(σ(t))∣

defined as

hi(t,R) ∶= (hij1(R),⋯,hij∣Ni(σ(t))∣(R)) ∈ (S2)∣Ni(σ(t))∣ (3.3.28)

where

hij ∶ SO(3)N ∋ (R1,⋯,RN) =R↦ hij(R) ∶=RT

i Rjn̄j =RT

i nj ∈ S2 (3.3.29)

for each j ∈ Ni(σ(t)) and where we have used the notation (3.3.25). Thus, at each
time instant t ∈ R≥0, agent i ∈ N measures the ∣Ni(σ(t))∣ unit vectors corresponding
to the projection of a neighbor’s unit vector onto agent’s i body frame.

At this point, we recall the notion of decentralized output feedback control law
as defined in Section 3.2.2, which should made clear the previous definition of output
function and the Problem statement presented next.

Problem 3.3.9. For each i ∈ N , design time-varying decentralized feedback laws ωhi ,
with ωhi (t, ⋅) ∶ (S2)∣Ni(σ(t))∣ ↦ R3 depending on the measurements hi(t, ⋅) in (3.3.28)
for each t ≥ 0, such that asymptotic synchronization of n = (R1n̄1,⋯,RN n̄N) ∶ R≥0 ↦
(S2)N is accomplished, where Ṙi(t) = fR(Ri(t),ωhi (t,hi(t,R(t)))) for every i ∈ N .

Problem 3.3.9 may be restated as finding a control law for each agent that
depends exclusively on the measurement function as defined in (3.3.28), and which
encodes the partial state information available to each agent at a given time instant.

Definition 3.3.10. We define the angular displacement between two unit vectors
θ ∶ S2 × S2 ∋ (nTi nj)↦ θ(ni,nj) ∶= arccos(nTi nj) ∈ [0, π].

For each t ∈ R≥0 and agent i ∈ N , we propose the control law ωhi (t, ⋅) ∶ (S2)∣Ni(σ(t))∣ ∋
(hij1 ,⋯,hij∣Ni(σ(t))∣) = hi ↦ ωcli (t,hi) ∈ Tn̄iS

2 ⊂ R3 defined as

ωcli (t,hi) ∶=∑j∈Ni(σ(t))
wij(θ(n̄i,hij))S (n̄i)hij, (3.3.30)

where wij ∶ [0, π]↦ R≥0 is a continuous function satisfying

wij(θ) > 0,∀θ ∈ (0, π], (3.3.31)

86 Attitude Synchronization

and corresponding to a weight agent i assigns to the displacement between itself and
its neighbor j. Denote ωcli ∶ R≥0 × SO(3)N ∋ (t,R)↦ ωcli (t,R) ∶= ωhi (t,hi(t,R)) ∈ R3

as the composition of the output feedback control law (3.3.30) with the output
function (3.3.28). It follows that

ωcli (t,R) =∑j∈Ni(σ(t))
wij(θ(n̄i,RT

i Rjn̄j))S (n̄i)RiRjn̄j (3.3.32)

=RT

i ∑j∈Ni(σ(t))
wij(θ(ni,nj))S (ni)nj, (3.3.33)

where we have used the notation in (3.3.24) and (3.3.25); and where we have made
use of the fact that θ(ni,nj) = θ(RT

i ni,RT

i nj) for anyRi ∈ SO(3) and any ni,nj ∈ S2.
We emphasize that the control law (3.3.33) is based on the output feedback control
law, and thus depends only on the relative orientation measurements (see (3.3.28)
and (3.3.29)); moreover, (3.3.33) is orthogonal to n̄i, which implies that full angular
velocity control is not necessary, i.e. we only need to control the angular velocity
along the two directions orthogonal to n̄i.

Denote w̃ij(ni,nj) = wij(θ(ni,nj)), which satisfies (3.3.11) for any α ∈ [0, π]
and ν̄ ∈ S2, due to (3.3.31) and Definition 3.3.10. With the above in mind, the
dynamics (3.3.27), when composed with the proposed law (3.3.33), are given by
ṅi(t) = f̃i,σ(t)(n(t)), where f̃i,σ(t) ∶ (S2)N ∋ (n1,⋯,nN) = n ↦ f̃i,σ(t)(n) ∈ TniS

2 is given
by

f̃i,σ(t)(n) ∶= fn(Ri,ω
cl

i (t,R), n̄i)
= S (Riω

cl

i (t,R))Rin̄i
= −S (ni)Riω

cl

i (t,R)
=∑j∈Ni(σ(t))

w̃ij(ni,nj)Π (ni)nj, (3.3.34)

where we have used the notation in (3.3.24) and (3.3.25). We have thus casted this
problem in the form (3.3.9)-(3.3.10) with ν ≡ n ∈ (S2)N .

3.3.7 Consensus in Rn casted as synchronization in Sn

As stated in Section 3.3.4, consensus in Rn can also be casted as a synchroniza-
tion problem in Sn, for any n ∈ N. Consider x = (x1,⋯,xN) ∶ R≥0 ∋ t ↦ x(t) =
(x1(t),⋯,xN(t)) ∈ (Rn)N , evolving according to ẋi(t) = fx(x(t)) for every i ∈ N ,
where fx ∶ (Rn)N ∋ (x1,⋯,xN) = x ↦ fx(x) ∈ Rn is given by

fx(x) ∶=∑
j∈Ni(σ(t))

wij(∥xj − xi∥)(xj − xi), (3.3.35)

and which is the dynamics of one agent in consensus [98], and which is not in the
form (3.3.10). In order to write the closed loop dynamics (3.3.35) as in (3.3.10), we
perform a transformation which is discussed next.

In order to analyze consensus in Rn under the same framework as synchronization
in S2 and SO(3), we now perform a change of variables that serves only the purpose

3.3. A common framework for attitude synchronization 87

of analysis. Consider the unit vector en+1 = (0n,1) ∈ Sn ⊂ Rn+1 and the matrix
P = [In 0n]T ∈ R(n+1)×n. Consider also the mapping

h ∶ Rn ∋ xi ↦ h(xi) =
Pxi + en+1

∥Pxi + en+1∥
∈ C (π

2
,en+1) ⊂ Sn ⊂ Rn+1, (3.3.36)

where ∥Pxi + en+1∥ = √1 + xTi xi ≥ 1 > 0 for all xi ∈ Rn. This transformation is
illustrated in Fig. 3.7. Notice that h is, in fact, a diffeomorphism between Rn

and C(π2 ,en+1), with h−1 ∶ C(π2 ,en+1) ∋ zi ↦ h−1(zi) = P T (1
zTi en+1

zi − en+1) ∈ Rn.
Denote then H(x) = (h(x1),⋯,h(xN)) for x = (x1,⋯,xN) ∈ (Rn)N and H−1(z) =
(h−1(z1),⋯,h−1(zN)) for z = (z1,⋯,zN) ∈ C(π2 ,en+1)N .

Let x = (x1,⋯,xN) ∈ (Rn)N and z = (z1,⋯,zN) ∈ C(π2 ,en+1)N where z = H(x)⇔
x = H−1(z). It holds that

dh(xi)fx(ucl,xi (t,x))∣x=H−1(z) =

=∑
j∈Ni(σ(t))

eTn+1zi
eTn+1zj

wij (∥
zj

eTn+1zj
− zi

eTn+1zi
∥)Π (zi)zj (3.3.37)

=∶∑
j∈Ni(σ(t))

w̃ij(zi,zj)Π (zi)zj, (3.3.38)

where, in the last step, we defined w̃ij(zi,zj) ∶= zTi en+1
zTj en+1

wij(∥ zj
zTj en+1

− zi
zTi en+1

∥), which
satisfies (3.3.11) for α = π

2 and for ν̄ = en+1 ∈ Sn. Details of the previous derivations
are found in [111].

Consider then x = (x1,⋯,xN) ∶ R≥0 ∋ t ↦ x(t) ∈ (Rn)N where xi(⋅) evolves
according to (3.3.35) for each i ∈ N . Then, if we consider z = (z1,⋯,zN) ∶ R≥0 ∋
t ↦ z(t) ∶= H(x(t)) ∈ C(π2 ,en+1)N , it follows from (3.3.38) that żi(t) = f̃i,σ(t)(z(t)),
where f̃i,σ(t) ∶ (Sn)N ∋ (z1,⋯,zN) = z↦ f̃i,σ(t)(z) ∈ TziS

n is given by

f̃i,σ(t)(z) =∑j∈Ni(σ(t))
w̃ij(zi,zj)Π (zi)zj. (3.3.39)

We have thus casted this problem in the form (3.3.9) with ν ≡ z ∈ (Sn)N .

Remark 3.3.11. Unlike synchronization in S2 and SO(3), the unit vectors in this
section are by construction contained in a π

2 -cone formed by the unit vector en+1

(see the co-domain of h in (3.3.36)). Also, note that h in (3.3.36) may be defined
with other vectors other than en+1, i.e., h(xi) = Pxi+ẽ

∥Pxi+ẽ∥ with some ẽ ∈ Sn satisfying
eTn+1ẽ ≠ 0 also works as an alternative transformation.

3.3.8 Analysis
In this section, we analyze the solutions of (3.3.9)-(3.3.10), and show that given a
wide set of initial conditions, asymptotic synchronization is guaranteed. Specifically,
asymptotic synchronization is guaranteed if all unit vectors are initially contained in
an open α⋆-cone, i.e. if ∃ν̄ ∈ Sn ∶ ν(0) ∈ C(α⋆, ν̄)N , where α⋆ = π

2 for synchronization
in S2 and consensus in Rn, and α⋆ = π

4 for synchronization in SO(3).

88 Attitude Synchronization

R
n

R
n+1

en+1 =

[

0

1

]

2 R
n+1

xj

zj =
xj+en+1

kxj+en+1k
2 Sn

xi

Sn 3
xi+en+1

kxi+en+1k
= zi

0

Figure 3.7: Casting consensus in Rn as synchronization in Sn.

Remark 3.3.12. If ν(0) ∈ C(α, ν̄)N for some α ∈ [0, α⋆) and some ν̄ ∈ Sn, then
Proposition 3.3.20 in Subsection 3.3.10 guarantees that there exist n + 1 linearly
independent unit vectors {ν̄k ∈ Sn}k∈{1,⋯,n+1} such ν(0) ∈ C(α⋆, ν̄k)N∀k ∈ {1,⋯, n+ 1}.
Thus, if ν(0) is contained in an open α cone, then there exist other bigger cones
that contain ν(0); as such, the choice of ν̄ is not unique.

Next, we introduce a coordinate transformation that we exploit in order to cast
the dynamics (3.3.10) into a form that satisfies the conditions of Theorem 3.3.1.
In particular, given some ν̄ ∈ S2 we consider the projection of the cone C(π2 , ν̄) to
the plane in Rn+1 orthogonal to ν̄ and containing zero, and then map this plane
isometrically to Rn.

Definition 3.3.13. Let ν̄ ∈ Sn and Qν̄ ∈ R(n+1)×n such that ν̄ and the columns of Qν̄
form an orthonormal basis of Rn+1, and consider the diffeomorphism hν̄ ∶ C(π2 , ν̄) ∋
νi ↦ hν̄(νi) ∈ B(1) (see Notation for the definition of B(⋅)), defined as

hν̄(νi) ∶= QT

ν̄νi. (3.3.40)

Its inverse is h−1
ν̄ ∶ B(1) ∋ xi ↦ h−1

ν̄ (xi) =
√

1 − ∥xi∥2ν̄ + Qν̄xi ∈ C(π2 , ν̄). Denote
also Hν̄ ∶ C(π2 , ν̄)

N ∋ (ν1,⋯,νN) = ν ↦ Hν̄(ν) ∈ B(1)N , defined as Hν̄(ν) ∶=
(hν̄(ν1),⋯,hν̄(νN)), with H−1

ν̄ defined similarly.

Figure 3.8 illustrates the mapping hν̄ as introduced in Definition 3.3.13, for n = 2
and N = 3: in the figure, xi = hν̄(νi)

(3.3.40)= QT

ν̄νi, and green lines are those spanned
by the columns of Qν̄ (which form a plane).

Proposition 3.3.14. Consider ν̄ ∈ Sn and νi,νj ∈ C(π2 , ν̄). Then, ν̄Tν =
√

1 − ∥hν̄(ν)∥2 >
0 and the following implications hold: ∥hν̄(νi)∥ > ∥hν̄(νj)∥⇔ 0 < ν̄Tνi < ν̄Tνj, and
∥hν̄(νi)∥ ≥ ∥hν̄(νj)∥⇔ 0 < ν̄Tνi ≤ ν̄Tνj.

Proof. Since hν̄(ν) = Qν̄ν, then ∥hν̄(ν)∥2 = νTQν̄QT

ν̄ν = νTΠ (ν̄)ν = 1 − (ν̄Tν)2

(notice that Qν̄QT

ν̄ = Π (ν̄)). Since ν̄Tν > 0, for any ν ∈ C(π2 , ν̄), it follows that
ν̄Tν =

√
1 − ∥hν̄(ν)∥2. The implications in the Proposition follow since ν̄Tν =√

1 − ∥hν̄(ν)∥2 is decreasing with ∥hν̄(ν)∥, and since νi,νj ∈ C(π2 , ν̄).

Consider now the solution ν ∶ R≥0 ↦ (Sn)N of (3.3.9)-(3.3.10) with ν(0) ∈
C(π2 , ν̄)

N for some ν̄ ∈ Sn, which, as will be shown in Theorem 3.3.17, remains in

3.3. A common framework for attitude synchronization 89

1
0.5

ν2

ν̄

ν3

0

ν1

x2

-0.5

Iy

x3

x1

-11

0.5

Ix

0

-0.5

1

0.5

0

-0.5

-1

-1

I
z

Figure 3.8: Illustration of diffeomorphism as in Definition (3.3.13)

C(π2 , ν̄)
N for all t ≥ 0; and define x ∶ R≥0 ↦ (Rn)N as x(t) = Hν̄(ν(t)). Then, based on

the transformation introduced in Definition 3.3.13, it follows that ẋ(t) = fσ(t)(x(t)),
where

fσ(t)(x) = dHν̄(ν)f̃σ(t)(ν)∣ν=H−1
ν̄ (x), (3.3.41)

and ẋi(t) = hν̄(νi(t)) evolves according to ẋi(t) = fi,σ(t)(x(t)), where

fi,σ(t)(x) = dhν̄(νi)f̃σ(t)(ν)∣ν=H−1
ν̄ (x)

= QT

ν̄∑j∈Ni(σ(t))
w̃ij(νi,νj)Π (νi)νj ∣ν=H−1

ν̄ (x). (3.3.42)

It follows from (3.3.42) that, for ν ∈ C(π2 , ν̄)
N with ν̄ ∈ Sn, x = Hν̄(ν) ∈ B(1)N and

any p ∈ P,

xTi fi,p(x) (3.3.42)= νTi Qν̄Q
T

ν̄∑j∈Ni(p)
w̃ij(νi,νj)Π (νi)νj

=νTi Π (ν̄)∑j∈Ni(p)
w̃ij(νi,νj)Π (νi)νj

=(νTi − (νTi ν̄)ν̄T)∑j∈Ni(p)
w̃ij(νi,νj)Π (νi)νj

= − ν̄Tνi∑j∈Ni(p)
w̃ij(νi,νj)ν̄TΠ (νi)νj. (3.3.43)

The following result provides certain properties that are exploited in determining
the sign of (3.3.43).

Proposition 3.3.15. Consider three unit vectors ν1, ν2, ν̄ ∈ Sn, satisfying 0 <
ν̄Tν1 ≤ ν̄Tν2. Then (a) ν̄TΠ (ν1)ν2 = 0 iff ν1 = ν2, and (b) ν̄TΠ (ν1)ν2 > 0 iff
ν2 ≠ ν1.

Proof. Sufficiency: Regarding (a), if ν2 = ν1, then ν̄TΠ (ν1)ν2 = ν̄TΠ (ν1)ν1 = 0.
Regarding (b), if ν1 ≠ ν2 then νT1 ν2 < 1. Consider then the following two cases: (1)
ν̄Tν1 = ν̄Tν2 and (2) ν̄Tν1 ≠ ν̄Tν2. For case (1), it follows that ν̄TΠ (ν1)ν2 = ν̄Tν2 −
ν̄Tν1ν

T

1 ν2 = ν̄Tν1(1 − νT1 ν2) > 0, where the inequality applies since νT1 ν2 < 1 and

90 Attitude Synchronization

since, by assumption 0 < ν̄Tν1. For case (2), the Proposition’s assumption becomes
0 < ν̄Tν1 < ν̄Tν2. Then, since νT1 ν2 < 1, it follows that 0 < ν̄Tν1 < ν̄Tν1ν

T

1 ν2 ⇒
ν̄TΠ (ν1)ν2 > 0. Necessity: Regarding (a), if we assume on the contrary that ν1 ≠ ν2,
then it follows from before that ν̄TΠ (ν1)ν2 = ν̄Tν2 − ν̄Tν1ν

T

1 ν2 > 0, which implies
that ν1 = ν2. Similarly, regarding (b), if we assume on the contrary that ν1 = ν2,
then it follows from before that ν̄TΠ (ν1)ν2 = ν̄TΠ (ν1)ν1 = 0, which implies that
ν1 ≠ ν2.

We show next, by combining Propositions 3.3.14 and 3.3.15 and exploiting (3.3.43),
that the conditions of Theorem 3.3.1 are satisfied for the dynamics (3.3.41)-(3.3.42).

Proposition 3.3.16. Consider the vector field as defined in (3.3.41)-(3.3.42) for
certain ν̄ ∈ Sn and assume that the switching signal σ ∶ R≥0 ↦ {1,⋯, p} encodes
only connected network graphs. Then the vector field (3.3.41)-(3.3.42) satisfies the
conditions of Theorem 3.3.1 for r = 1.

Proof. In order to verify that the conditions of Theorem 3.3.1 are satisfied by the
vector field in (3.3.41)-(3.3.42), we exploit (3.3.43) and the fact that for each x =
(x1,⋯,xN) = H(ν) ∈ B(1)N there exists a (unique) ν = (ν1,⋯,νN) ∈ C(α⋆, ν̄)N such
that x = H(ν). We proceed with the verification of Condition 1) of Theorem 3.3.1
and pick x ∈ B(1)N , where x = H(ν) for certain ν ∈ C(α⋆, ν̄)N . Notice, that since
ν ∈ C(α⋆, ν̄)N , it holds by definition that ν̄Tνi > cos(α⋆) ≥ 0∀i ∈ N . Therefore, since
Condition 1)a) depends exclusively on the sign of (3.3.43), we can ignore the effect
of the positive term ν̄Tνi.

In order to show Condition 1)a), pick any p ∈ P and notice, that due to (3.3.11)
and continuity of w̃ij(⋅, ⋅) it holds w̃ij(νi,νj) ≥ 0 for any νi,νj ∈ C(α⋆, ν̄) and i, j ∈ N .
In addition, by recalling that H(x) = {i ∈ N ∶ i = arg maxj∈N ∥xj∥} and thus, that
∥xi∥ ≥ ∥xj∥ for all j ∈ N /{i}, it follows from Proposition 3.3.14 that ν̄Tνi ≤ ν̄Tνj
for all j ∈ N /{i}. From the latter and the result of Proposition 3.3.15, we get that
ν̄TΠ (νi)νj ≥ 0 for all j ∈ N (p). Thus, we conclude from (3.3.43) that for any
p ∈ P and x ∈ B(1)N it holds xTi fi,p(x) ≤ 0, which by virtue of (3.3.3) implies that
Condition 1)a) is satisfied.

For the verification of Condition 1)b), we additionally assume that x /∈ C, where
C = {x ∈ (Rn)N ∶ x1 = ⋯ = xN}. We will show that for each p ∈ P there exists
k ∈H(x) such that xTk fk,p(x) < 0. Indeed, suppose on the contrary that there exists
p ∈ P such that

xTi fi,p(x) = 0∀i ∈H(x), (3.3.44)

and recall that the agents’ network is not synchronized, since x /∈ C. Consider then an
l ∈H(x), for which xTl fl,p(x) = 0 according to assumption (3.3.44). Notice also, that
due to (3.3.11), Propositions 3.3.14, 3.3.15 and (3.3.43), it can be shown (as in the
proof of Condition 1)a) above) that xTl fl,p(x) = 0 is satisfied only if all neighbors of
agent l are synchronized with agent l, i.e., only if νj = νl⇔ xj = xl for all j ∈ Nl(p).
This implies that all j ∈ Nl(p) are contained in H(x), i.e., Nl(p) ∪ {l} ⊆H(x). As

3.3. A common framework for attitude synchronization 91

such, by assumption (3.3.44), xTj fj,p(x) = 0 for all j ∈ Nl(p), which means that the
previous rationale is applicable for all j ∈ Nl(p), thus leading to the conclusion
that all neighbors of all neighbors of agent l are necessarily synchronized with each
other. Since the graph encoded by p ∈ P is connected, the previous rationale, applied
N − 1 times, leads to the conclusion that all agents are synchronized. Since x /∈ C, a
contradiction has been reached, and therefore, for each p ∈ P , there exists a k ∈H(x)
for which xTk fk,p(x) < 0, and therefore condition 1)b) of Theorem 3.3.1 is satisfied.

Finally, let x = (x1,⋯,xN) ∈ C. Since x1 = ⋯ = xN ⇔ ν1 = ⋯ = νN , it follows from
Proposition 3.3.15 that xTi fp(x) = 0 for all p ∈ P. Thus, the second condition of
Theorem 3.3.1 is also satisfied.

Theorem 3.3.17. Consider the solution ν ∶ R≥0 ↦ (Sn)N of (3.3.9) with ν(0) ∈
C(α⋆, ν̄)N for some ν̄ ∈ Sn. Then, for a network graph connected at all times, i)
ν(t) ∈ C̄(α, ν̄)N for all t ≥ 0, where α = arccos(maxi∈N ν̄Tνi(0)) ∈ [0, α⋆); ii) ν(⋅)
synchronizes asymptotically and limt→∞ ν̄νi(t) exists for all i ∈ N ; and iii) all unit
vectors converge to a constant unit vector, i.e. ∃ν⋆ ∈ Sn ∶ limt→∞ ν(t) ∈ C(0,ν⋆)N .

Proof. Consider a solution ν(⋅) of (3.3.9), and x(⋅) = Hν̄(ν(⋅)). Since α⋆ is either π
2

or π
4 , then ν(0) is within the domain of Hν̄(⋅) and moreover B̄(r0)N ⊂ B(1)N where

r0
(3.3.40)= maxi∈N ∥QT

ν̄νi(0)∥
Prop 3.3.14=

√
1 −maxi∈N(ν̄Tνi(0))2 < 1 (where the latter

inequality follows from the fact that ν(0) ∈ C(α⋆, ν̄)N). From Proposition 3.3.16, the
dynamics (3.3.41) satisfy Theorem’s 3.3.1 conditions and therefore the set B̄(r0)N
is positively invariant for trajectories of ẋ(t) = fσ(t)(x(t)). This in turn implies
that the set H−1

ν̄ (B̄(r0)N) = C̄(α, ν̄)N , where α = arccos(maxi∈N ν̄Tνi(0)) ∈ [0, α⋆),
is positively invariant for trajectories of ν̇(t) = f̃σ(t)(ν(t)); i.e, all unit vectors are
forever contained in the closed α-cone they start on. This suffices to conclude i) in
the Theorem.

Let us now focus on part ii) of the Theorem. From Proposition 3.3.16, the
dynamics (3.3.41) satisfy Theorem’s 3.3.1 conditions. It follows from Theorem 3.3.1
that limt→∞ xi(t)−xj(t) = 0 for all i, j ∈ N , which implies that limt→∞ νi(t)−νj(t) =
0, for all i, j ∈ N (see Proposition 3.3.14). Moreover, it follows that the Lya-
punov function in Theorem 3.3.1 converges to a constant, i.e., limt→∞ V (t) =
limt→∞ maxi∈N 1

2∥xi(t)∥
2 = limt→∞

1
2∥x1(t)∥2 = V ∞, for some constant 0 ≤ V ∞ ≤

V (0) < 1
2 . From Proposition 3.3.14, it follows that limt→∞ ν̄νi(t) = limt→∞

√
1 − ∥xi(t)∥2 =√

1 − 2V ∞.
We now prove part iii) of the Theorem. Since ν(0) ∈ C(α⋆, ν̄)N for some ν̄ ∈ Sn,

Proposition 3.3.20 guarantees that there exist n + 1 linearly independent unit
vectors {ν̄1,⋯, ν̄n+1} such that ν(⋅) ∈ C(α⋆, ν̄k)N for all k ∈ {1,⋯, n + 1}. From
part ii) of this Theorem, it follows that, for each k ∈ {1,⋯, n + 1}, there exists
a constant V ∞

k < 1
2 such that limt→∞ ν̄

T

k ν1(t) =
√

1 − 2V ∞
k . Thus, it follows that

limt→∞Aν1(t) = b ⇔ limt→∞ ν1(t) = A−1b, where AT = [ν̄1⋯ν̄n+1] is non-singular,
since ν̄1,⋯, ν̄n+1 are linearly independent, and bT = [

√
1 − 2V ∞

1 ⋯
√

1 − 2V ∞
n+1]. Since

synchronization is asymptotically reached, limt→∞ νi(t) = A−1b for all i ∈ N .

92 Attitude Synchronization

3.3.9 Simulations

In this section, we present simulations that illustrate some of the results in the
previous sections.

All simulations are provided for a network of six agents, i.e., N = {1,⋯, 6}, whose
network topology is presented in Fig. 3.10. The neighbor sets for all agents change
in time: for agent 1, N1(⋅) alternates between {2} and {2,4}; for agent 2, N2(⋅)
alternates between {3} and N2(⋅) = {3, 6}; for agent 3, N3(⋅) alternates between {4}
and {4,5}; for agent 4, N4(⋅) alternates between {5} and {5,1}; for agent 5, N5(⋅)
alternates between {6} and {6,3}; for agent 6, N6(⋅) alternates between {1} and
{1,2}. For these time-varying neighbor sets, the network graph is connected at all
times.

The switching time instants for the neighbor set of each agent i ∈ N are those
from the sequences T i = { 1

i
+ ki}k∈N, which are shown in the time axes in Fig 3.9.

For the same initial conditions, we perform two simulations, each one with different
weight functions: for agents whose i ∈ N is even, gij(θ) = j for both simulations; for
agents whose i ∈ N is odd, we consider gij(θ) = j(2 − cos(θ)) for simulation 1 and
gij(θ) = j(1 − cos(θ)) for simulation 2. Notice that gij(0) = j > 0 for the former case,
and gij(0) = 0 for the latter case, which means odd agents penalize small errors
differently between the two simulations.

In Figs. 3.9a-3.9f, six unit vectors are randomly initialized in an open π
2 -cone

around [1 0 0]T . In Figs. 3.9a and 3.9d, the trajectories of the unit vectors on the
unit sphere is shown, and a visual inspection indicates convergence to a synchronized
network. In Figs. 3.9b and 3.9e, the function V (x) = maxi∈N 1

2∥xi∥
2 – used in

Theorem 3.3.17 – is provided, and we can verify that despite being non-smooth,
it is almost always decreasing; notice that V (x(⋅)) converges to a constant which
quantifies the asymptotic angular distance between all unit vectors and [1 0 0]T . In
Figs. 3.9c and 3.9f, the angular distance, i.e., θ(⋅, ⋅) as in Definition 3.3.10, between
some agents is presented, and it indicates convergence to a synchronized network.
Notice that in simulation 1 convergence is quicker when compared to simulation 2.
This is a consequence of choosing, for simulation 2, weight functions that are zero
when two unit vectors are synchronized, i.e., gij(0) = 0 for i odd. This means that
odd agents do not penalize the error between themselves and their neighbors as
much when they are close, and thus leading to a slow convergence to a synchronized
network. In turn, even agents i ∈ N tend to converge to some odd agent, when
∣Ni(⋅)∣ = 1 (if ∣Ni(⋅)∣ = 1 then Ni(⋅) is a set composed of one odd number); and tend
to converge to somewhere in between their two neighbors when ∣Ni(⋅)∣ = 2. This
explains the oscillatory behavior for simulation 2 in Figs.3.9e and 3.9f.

In Figs. 3.9g-3.9l, six rotation matrices were randomly initialized such that
θ(I,Ri) ≤ π

2 for all i ∈ N . In Figs. 3.9g and 3.9j, the trajectories of the rotation
matrices are shown on a sphere of π radius1, and a visual inspection indicates
convergence to a synchronized network. In Figs. 3.9h and 3.9k, the function V (x) =

1For each rotation matrix Ri, we plot v(Ri) with v as defined in (3.2.2).

3.3. A common framework for attitude synchronization 93

maxi∈N 1
2∥xi∥

2 – used in Theorem 3.3.17 – is provided, and we can verify that despite
being non-smooth, it is almost always decreasing; notice that V (x(⋅)) converges to
a constant which quantifies the asymptotic angular distance between all rotation
matrices and I (the rotation matrix that all rotation matrices start close to). In
Figs. 3.9i and 3.9l, the angular distance, i.e., θ(⋅, ⋅) as in Definition 3.3.6, between
some agents is presented, and indicating convergence to a synchronized network.
Notice that in simulation 1 convergence is quicker when compared to simulation 2.
The explanation for this behavior is the same as that provided before, and it is a
consequence of choosing, for simulation 2, weight functions that are zero when the
two rotation matrices are synchronized, i.e., gij(0) = 0 for i odd. The oscillatory
behavior for simulation 2 in Figs.3.9k and 3.9l is also explained by the same reasoning
described before.

3.3.10 Auxiliary results
The following Proposition is a direct consequence of Proposition 1.3.4.

Proposition 3.3.18. If (ν1,ν2) ∈ C(α, ν̄)2 for some ν̄ ∈ Sn and some α ∈ [0, π2],
then νT1 ν2 > cos(2α). If ν = (ν1,⋯,νN) ∈ C(α,ν)N for some ν̄ ∈ Sn and some
α ∈ [0, π2], then νTi νj > cos(2α) for all i, j ∈ N .

Proposition 3.3.19. Consider n + 1 linearly independent unit vectors ν1,⋯,νn+1 ∈
Sn ⊂ Rn+1, and n + 1 constants v1,⋯vn+1 ∈ (−1,1). There exists no more than one
ν⋆ ∈ Sn that satisfies vi = νTi ν⋆, for all i = {1,⋯, n + 1}.

Proof. Denote N = [ν1⋯νn]T ∈ R(n+1)×(n+1) and V = [v1⋯ vn]T ∈ Rn+1. The system
of equations vi = νTi ν⋆, for i = {1,⋯, n + 1}, can be rewritten as Nν⋆ = V. Since
ν1,⋯,νn+1 are linearly independent, N is non-singular, and a unique solution exists
and is given by ν⋆ = N−1V. The unique solution ν⋆ is a unit vector if ∥N−1V∥ = 1.

Figure 3.12 illustrates the result in Proposition 3.3.19, which essentially implies
that in a sphere in Rn, the intersection of the boundaries of n cones yields a unit
vector (each circle in the figure represents the vectors ν ∈ S2 for which νTνi = vi,
for i ∈ {1,2,3}).

Proposition 3.3.20. Let ν ∈ Sn and α ∈ [0, π2). There exist n + 1 linearly indepen-
dent unit vectors ν1,⋯,νn+1 ∈ Sn such that C(α,ν) ⊂ C(α + δ,νi) ⊂ C(π2 ,νi) for all
i ∈ {1,⋯, n + 1} and for some δ ∈ (0, π2 − α).

Proof. It is trivial to verify that C(α,ν) ⊂ C(α + δ,νi) for any δ ∈ (0, π2 − α). Now,
recall that, by definition, νTn > cos(α) > 0 for all n ∈ C(α,ν). Consider then the
unit vector ηi = cos(δ)ν + sin(δ)ν⊥i ∈ Sn, for some δ ∈ (0, π2 −α) and where ν⊥i ∈ Sn is
an unit vector orthogonal to ν. Since δ ∈ (0, π2 − α), it follows that cos(δ) > 0. Then
nTηi = cos(δ)nTν + sin(δ)nTν⊥i > cos(δ) cos(α)− sin(δ) sin(α) = cos(α+ δ) > cos(α),
for all n ∈ C(α,ν). Since there are n unit vectors ν⊥1 ,⋯,ν⊥n orthogonal to ν, it
follows that we can find n linearly independent unit vectors η1,⋯,ηn such that

94 Attitude Synchronization

1

0.5

Iy-Axis

0

-0.5

-1
1

0.5

Ix-Axis

0

-0.5

-1

1

0.5

0

-0.5

-1

I
z-
A
x
is

(a) Simulation 1: Trajecto-
ries of unit vectors in unit
sphere

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1
2‖x1‖

2

1
2‖x2‖

2

1
2‖x3‖

2

1
2‖x4‖

2

1
2‖x5‖

2

1
2‖x6‖

2

maxi
1
2‖xi‖

2

(b) Simulation 1: time evo-
lution of 1

2∥xi(t)∥
2, with xi

as in Definition 3.3.13

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
eg
re
es

(◦
)

0

50

100

150

θ(n1,n2)
θ(n2,n3)
θ(n3,n4)
θ(n4,n5)
θ(n5,n6)
θ(n6,n1)

(c) Simulation 1: angu-
lar distance between some
pairs of unit vectors

1

Iy-Axis

0

-1
1Ix-Axis

0

-1

0.5

-1

-0.5

0

1

I
z-
A
x
is

(d) Simulation 2: Trajecto-
ries of unit vectors in unit
sphere

Time (s)
0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

1
2‖x1‖

2

1
2‖x2‖

2

1
2‖x3‖

2

1
2‖x4‖

2

1
2‖x5‖

2

1
2‖x6‖

2

maxi
1
2‖xi‖

2

(e) Simulation 2: time evo-
lution of 1

2∥xi(t)∥
2, with xi

as in Definition 3.3.13

Time (s)
0 5 10 15 20

D
eg
re
es

(◦
)

0

20

40

60

80

100

120

140

θ(n1,n2)

θ(n2,n3)

θ(n3,n4)

θ(n4,n5)

θ(n5,n6)

θ(n6,n1)

(f) Simulation 2: angu-
lar distance between some
pairs of unit vectors

2

Iy-Axis

0
-2

2

0

Ix-Axis

-2

3

2

1

0

-1

-2

-3

I
z-
A
x
is

(g) Simulation 1: Trajecto-
ries of rotation matrices in
sphere of π radius

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.05

0.1

0.15

0.2

0.25

1
2‖x1‖

2

1
2‖x2‖

2

1
2‖x3‖

2

1
2‖x4‖

2

1
2‖x5‖

2

1
2‖x6‖

2

maxi
1
2‖xi‖

2

(h) Simulation 1: time evo-
lution of 1

2∥xi(t)∥
2, with xi

as in Definition 3.3.13

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
eg
re
es

(◦
)

0

20

40

60

80

100

120

θ(R1, R2)
θ(R2, R3)
θ(R3, R4)
θ(R4, R5)
θ(R5, R6)
θ(R6, R1)

(i) Simulation 1: angu-
lar distance between some
pairs of rotation matrices

2

Iy-Axis

0
-2

2

0

-2

Ix-Axis

3

2

0

-1

-2

-3

1

-4

I
z-
A
x
is

(j) Simulation 2: Trajecto-
ries of rotation matrices in
sphere of π radius

Time (s)
0 5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

1
2‖x1‖

2

1
2‖x2‖

2

1
2‖x3‖

2

1
2‖x4‖

2

1
2‖x5‖

2

1
2‖x6‖

2

maxi
1
2‖xi‖

2

(k) Simulation 2: time evo-
lution of 1

2∥xi(t)∥
2, with xi

as in Definition 3.3.13

Time (s)
0 5 10 15 20

D
eg
re
es

(◦
)

0

20

40

60

80

100

θ(R1, R2)

θ(R2, R3)

θ(R3, R4)

θ(R4, R5)

θ(R5, R6)

θ(R6, R1)

(l) Simulation 2: angu-
lar distance between some
pairs of rotation matrices

Figure 3.9: Simulations 1 and 2.

3.3. A common framework for attitude synchronization 95

1

2 3

4

6 5

Figure 3.10: Time-varying digraph with 6 agents.

ν⊥

ν

η = cos(δ)ν + sin(δ)ν⊥
α-cone

(α+ δ)-cone

δ
(α+ δ)-cone

Figure 3.11: Illustration of result in Proposition 3.3.20 for n = 2: closed (α+ δ)-cones
formed by ν and η contain closed α-cone formed by ν; also, ν and η are linearly
independent.

-1

-0.5

Ix

0

0.5

1

1

ν1

ν3

ν2

Iy

ν
⋆

0

-1

0

0.5

1

-0.5

-1

I
z

Figure 3.12: Illustration of result in Proposition 3.3.19 for n = 3.

C(α,ν) ⊂ C(α + δ,ηi) for all i ∈ {1,⋯, n}. Moreover, {ν,η1,⋯,ηn} are n + 1 linearly
independent unit vectors.

Figure 3.11 illustrates the result in Proposition 3.3.20 for n = 2. From Propo-
sition 3.3.20 it follows that if a group of unit vectors (in Rn+1) is contained in a
closed α-cone for some α ∈ [0, π2), then we can find n + 1 larger (by δ) closed cones
that contain the same group of unit vectors; i.e., given ν = (ν1,⋯,νN) ∈ C̄(α, ν̄)N
for some ν̄ ∈ Sn, there exist n + 1 linearly independent unit vectors, {ν̄1,⋯, ν̄n+1},
such that ν ∈ C̄(α + δ, ν̄i)N for all i ∈ {1,⋯, n + 1} and for some δ ∈ (0, π2 − α).

3.3.11 Auxiliary results: Quaternions
For details on unit quaternions, we refer to [108]. We denote by q = (q̂, q̄) ∈ S3

a unit quaternion, where q̂ is the quaternion’s vector component and q̄ is the
quaternion’s scalar component, and q⋆ = (−q̂, q̄) denotes the quaternion’s conjugate.
A rotation matrix R ∈ SO(3) can be parametrized by a unit quaternion q ∈ S3, i.e.,
R̄q ∶ S3 ↦ SO(3), defined as

R̄q(q) = qTq⋆I3 + 2q̄S (q̂) + 2q̂q̂T , (3.3.45)

96 Attitude Synchronization

provides a mapping from S3 to SO(3). Notice that R̄q(q) = R̄q(−q), and, in fact,
S3 provides a double covering of SO(3), where only two diametrically opposed unit
quaternions correspond to the same rotation matrix [112]. For convenience denote
Q ∶ S3 ↦ R4×4 defined as

Q(q) = q̄I4 +
⎡⎢⎢⎢⎣
S (q̂) q̂
−q̂T 0

⎤⎥⎥⎥⎦
, (3.3.46)

which satisfies QT (q) = Q(q⋆), Q(q⋆)Q(q) = Q(q)Q(q⋆) = I4 and Q(q)e4 = q̄e4 +
(q̂,0) = q. As such,

Q(q)(I4 − e4eT4)Q(q⋆) = Q(q)Q(q⋆) −Q(q)e4eT4Q(q⋆) = I − qqT = Π (q) .
(3.3.47)

Thus, given two unit quaternions q1,q2 ∈ S3, it holds that R̄q(q1)T = R̄q(q⋆1), and
that R̄q(q1)R̄q(q2) = R̄q(Q(q1)q2), where Q(q1)q2 ∈ S3 is also a unit quaternion.

Given q ∈ S3, it is easy to verify that

S−1 (R̄q(q) −RT (q)) = S−1 (4q̄S (q̂)) = 4q̄q̂ = 4q̄[I3 0]q. (3.3.48)

As such, since R̄T

q (q1)R̄q(q2) = R̄q(Q(q⋆
1)q2) and ¯Q(q⋆

1)q2 = qT1 q2 for any q1,q2 ∈
S3, it follows that

S−1 (RT (q1)R̄q(q2) −RT (q2)R̄q(q1))
(3.3.48)= 4qT1 q2 [I3 0]Q(q⋆1)q2. (3.3.49)

Finally, notice that
tr(R̄q(q)) − 1

2
= tr(qTq⋆I3 + 2q̄S (q̂) + 2q̂q̂T) − 1

2

= 3qTq⋆ + 2q̂T q̂ − qTq
2

= 3(q̄2 − q̂T q̂) + 2q̂T q̂ − qTq
2

= q̄2 − q̂T q̂ = qTq⋆, (3.3.50)

and therefore
tr(RT (q1)R̄q(q2)) − 1

2
= tr(R̄q(Q(q⋆1)q2) − 1

2
= qTq⋆∣q=Q(q⋆1)q2

=(Q(q⋆1)q2)T (Q(q⋆1)q2)⋆ = qT2 Q(q1)(Q(q⋆1)q2)⋆

=qT2 Q(q1)
⎡⎢⎢⎢⎣
−I 0
0 1

⎤⎥⎥⎥⎦
Q(q⋆1)q2 = −qT2 Q(q1)Q(q⋆1)q2 + 2qT2 Q(q1)e4eT4Q(q⋆1)q2

= − qT2 q2 + 2qT2 q1qT1 q2 = 2(qT1 q2)2 − 1. (3.3.51)

Given an angular velocity ω ∶ R≥0 ↦ R3, and given R ∶ R≥0 ↦ SO(3) evolving
according to Ṙ(t) =R(t)S (ω(t)), a parameterizing quaternion q ∶ R≥0 ∋ t↦ q(t) ∈
S3 evolves according to [108]

q̇(t) = 1
2
Q(q(t))

⎡⎢⎢⎢⎣
I
0

⎤⎥⎥⎥⎦
ω(t). (3.3.52)

3.4. Controllers for attitude synchronization on the sphere 97

q̄ ∈ S3

−q̄

α
2

α
2

qi ∈ S3

−qi

R := R(q̄) = R(−q̄)

Ri := R(qi) = R(−qi)

θ(R,Ri) ≤ α

α
2 -cone formed by −q̄

α
2 -cone formed by q̄

(a) If θ(R̄q(q̄),Ri) ≤ α, then there exists
a unit quaternion qi in the α

2 -cone formed
by the unit quaternion q̄ that parametrizes
Ri.

q̄ ∈ S3

−q̄

q̃i(t1)

R := R(q̄) = R(−q̄)

Ri(t) := R(q̃i(t)) = R(−q̃i(t))

q̃i(t2)

−q̃i(t1)
−q̃i(t2)

qi(t1) = q̃i(t1) ⇒ q̄Tqi(t1) > 0

qi(t2) = −q̃i(t2) ⇒ q̄Tqi(t2) > 0

q̃i(t) and −q̃i(t) are continuous for t ∈ (t1, t2)

(b) Given a continuous Ri ∶ R ↦ SO(3), a
continuous qi ∶ R≥0 ↦ S3 such that Ri(⋅) =
R̄q(qi(⋅)) and satisfying q̄Tqi(⋅) > 0, may
not be found.

Figure 3.13: Illustration for the result in Proposition 3.3.21

Proposition 3.3.21. Consider R = (R1,⋯,RN) ∈ SO(3)N such that θ(R̄,Ri) ≤ α,
for some α ∈ [0, π] and R̄ ∈ SO(3), and for all i ∈ N . If R̄ = R̄q(q̄) for some q̄ ∈ S3,
then there exists q = (q1,⋯,qN) ∈ (S3)N such that Ri = R̄q(qi) for each i ∈ N and
such that q ∈ C̄(α2 , q̄)N .

Proof. Recall that (3.3.45) provides a double cover of SO(3). Therefore there exists
q̄ ∈ S3 such that R̄ = R̄q(q̄) = R̄q(−q̄) ∈ SO(3). Similarly, for every i ∈ {1,⋯,N},
there exists a pair {qi ∈ S3,−qi ∈ S3} such that Ri = R̄q(qi) = R̄q(−qi) ∈ SO(3).
Denote q̃i ∈ {q̃i,−q̃i}. From (3.3.50)-(3.3.51), it follows that

cos(θ(R,Ri)) = 2(q̄T q̃i)2 − 1⇔ (3.3.53)

⇔∣q̄T q̃i∣ =
√

cos(θ(R,Ri)) + 1
2

= ∣cos(θ(R,Ri)
2

)∣ = cos(θ(R,Ri)
2

) , (3.3.54)

where the latter equality follows since θ(R,Ri) ∈ [0, π]. Thus, there always exists
a unit quaternion q̃i ∈ {q̃i,−q̃i} that parametrizes Ri and that satisfies q̄T q̃i =
cos (θ(R,Ri)2) ≥ cos (α2). As such, it follows that q = (q̃1,⋯, q̃N) ∈ C̄(α2 , q̄)N .

Remark 3.3.22. In the proof of Proposition 3.3.21, we note that, had we chosen
−q̄ ∈ S3 as the other possible parameterization of R̄ ∈ SO(3), then we would find
that −q̃i parametrizes Ri, for every i ∈ N , and that (−q̃1,⋯,−q̃N) ∈ C(α2 ,−q̄)N .

Figure 3.13 illustrates the results of Proposition 3.3.21.

3.4 Controllers for attitude synchronization on the sphere

3.4.1 Introduction
In this Section, we focus on incomplete attitude synchronization, as described in
Section 3.2.1. In this problem, there exists a group of rigid bodies, each one with
a main direction, and the global objective is to guarantee alignment of all rigid
bodies’ main directions. The space orthogonal to each main direction can be left
free of actuation or controlled to accomplish some other goals. Complete, attitude

98 Attitude Synchronization

synchronization, as opposed to incomplete, requires more measurements and it
might be the case that a rigid body is not fully actuated but rather only actuated
in the space orthogonal to a specific direction, in which case incomplete attitude
synchronization is still feasible. Incomplete attitude synchronization is also denoted
synchronization on the sphere in [80–84, 86], where the focus has been on kinematic
or point mass dynamic agents, i.e., dynamical agents without moment of inertia.

In [80, 81], incomplete synchronization of kinematic agents on the sphere is
studied, with a constant edge weight function for all edges. In particular, in [81],
incomplete synchronization is used for accomplishing a flocking behavior, where a
group of agents moves in a common direction. In [82], dynamic agents, which move at
constant speed on a sphere, are controlled by a state feedback control law that steers
their velocity vector so as to force the agents to attain a collective circular motion;
since the agents are mass points, the effect of the moment of inertia is not studied.
In [83], dynamic point mass agents, constrained to move on a sphere, are controlled
to form patterns on the sphere, by constructing attractive and repelling forces; in
the absence of repelling forces, synchronization is achieved. Also, the closed-loop
dynamics of these agents are invariant to rotations, or symmetry preserving, as those
in [80, 81], in the sense that two trajectories, whose initial condition – composed of
position and velocity – differs only on a rotation, are the same at each time instant
apart from the previous rotation. In the framework of this section, this property
does not hold, since our dynamic agents have a moment of inertia, unlike the agents
in [80, 81, 83], and constitutes therefore a novel result.

In this Section, we propose a distributed control strategy for synchronization of
elements in the unit sphere domain. The controllers for accomplishing synchronization
are constructed as functions of distance functions (or reshaping functions as denoted
in [75]), and, in order to exploit results from graph theory, we impose a condition
on those distance functions that will restrict them to be invariant to rotations of
their arguments. As a consequence, the proposed controllers can be implemented
by each agent without the need of a common orientation frame. We restrict the
proposed controllers to be continuous, which means that a synchronized network of
agents cannot be a global equilibrium configuration, since S2 is a non-contractible
set [113]. Our main contributions lie in proposing for the first time a controller that
does not require full torque when performing synchronization along a principal axis,
but rather torque orthogonal to that axis; in finding conditions on the distance
functions that guarantee that a synchronized network is locally asymptotically stable
for arbitrary connected network graphs, and that guarantee that a synchronized
network is achieved for almost all initial conditions in a tree graph; in providing
explicit domains of attraction for the network to converge to a synchronized network;
and in characterizing the equilibria configurations for some general, yet specific,
types of network graphs. The results here presented are based on those in [114]
and [115].

The remainder of this section is structured as follows: in Subsection 3.4.3,
the problem statement is described; in Subsection 3.4.4, the proposed solution is
presented; in Subsections 3.4.5 and 3.4.6, convergence to a synchronized network

3.4. Controllers for attitude synchronization on the sphere 99

is discussed for tree and arbitrary graphs, respectively; and, in Subsection 3.4.7,
simulations are presented that illustrate the theoretical results.

3.4.2 Notation
We refer the reader to the notation presented in Section 1.3, in page 5. In addition,
we say a ≠ 0 and b ≠ 0 have the same direction if b = λa for some λ ∈ R. Given
a,b ∈ Rn, a = ±b⇔ a = b ∨ a = −b. In the list below, let N ∈ N, i ∈ {1,⋯,N}, RB
stands for rigid body, BOF stands for body orientation frame, and, lastly, IOR
stands for an (unknown and common for all i ∈ {1,⋯,N}) inertial orientation frame.

Ji ∈M3,3 Moment of inertia of RB i (Ji = JTi ∈ R3×3)
Ri ∈ SO(3) BOF of RB i

n̄i ∈ S2 Direction of RB i to be synchronized, expressed in BOF of RB i

ni ∈ S2 Direction of RB i to be synchronized, expressed in IOF
ω1 ∈ R3 Angular velocity of RB i, expressed in BOF of RB i

Ti ∈ R3 Torque input of RB i, expressed in BOF of RB i

3.4.3 Problem Statement
We consider a group of N agents, indexed by the set N = {1,⋯,N}, operating in the
unit sphere domain, i.e., in S2 = {x ∈ R3 ∶ xTx = 1}. The agents’ network is modeled
as an undirected static graph, G = {N ,E}, with N as the vertices’ set indexed by the
team members, and E as the edges’ set. For every pair of agents (i, j) ∈ N ×(N /{i}),
that are aware of and can measure each other’s relative attitude, we say that agent
j is a neighbor of agent i, and vice-versa; also, we denote Ni ⊂ N as the neighbor set
of agent i. We consider a group of N rotations matrices, whose goal is to synchronize
one of their directions, in a problem that we call incomplete synchronization, which
has been described and illustrated in Section 3.2.1, page 72. Notice that an agent
i ∈ N is not aware of ni, since this is specified w.r.t. an unknown inertial orientation
frame; instead, agent i is aware of its own direction n̄i – fixed in its own orientation
frame – and the projection of its neighbors directions onto its own orientation frame.

Consider the variables introduced in the Notation section, and denote

n̄ =(n̄1,⋯, n̄N) ∈ (S2)N (3.4.1)
R =(R1,⋯,RN) ∈ SO(3)N (3.4.2)
n =(R1n̄1,⋯,RN n̄N) ∈ (S2)N (3.4.3)
ω =(ω1,⋯,ωN) ∈ (R3)N (3.4.4)
x =(R,ω) ∈ SO(3)N × (R3)N =∶ Ωx (3.4.5)
T =(T1,⋯,TN) ∈ (R3)N . (3.4.6)

where x is the state of the system, and where T is the input to the system.
Consider then any agent i ∈ N , a rotation matrix Ri ∶ R≥0 ↦ SO(3), a unit vector

100 Attitude Synchronization

ni ∶ R≥0 ∋ t↦ ni(t) =Ri(t)n̄i ∈ S2, a body-framed angular velocity ωi ∶ R≥0 ↦ R3 and
body frame torque Ti ∶ R≥0 ↦ R3. The rotation matrix Ri ∶ R≥0 ∋ t↦Ri(t) ∈ SO(3)
evolves according to

Ṙi(t) = fR(Ri(t),ωi(t)),Ri(0) ∈ SO(3), (3.4.7)

where fR ∶ SO(3) ×R3 ∋ (R,ω)↦ fR(R,ω) ∈ TRSO(3) is defined as

fR(R,ω) ∶=RS (ω) , (3.4.8)

while each unit vector ni ∶ R≥0 ∋ t ↦ ni(t) ∈ S2 evolves according to ṅi(t) =
fn(Ri(t),ωi(t), n̄i), where fn ∶ SO(3) ×R3 × S2 ∋ (Ri,ω, n̄i) ↦ fn(Ri,ω, n̄i) ∈ Tn̄iS

2

is defined as

fn(Ri,ω, n̄i) ∶= fR(Ri,ω)n̄i =RiS (ω) n̄i = S (Riω)Rin̄i. (3.4.9)

Finally, the body-framed angular velocity ωi ∶ R≥0 ∋ t↦ ωi(t) ∈ R3 evolves according
to the dynamics

d

dt
(Ri(t)Jiωi(t)) =Ri(t)Ti(t)⇔ (3.4.10)

⇔ ω̇i(t) = J−1
i (−S (ωi(t))Jiωi(t) +Ti(t)) (3.4.11)

⇔∶ω̇i(t) = fωi(ωi(t),Ti(t)), (3.4.12)

where fωi ∶ R3 ×R3 ∋ (ω,T)↦ fωi(ω,T) ∈ R3 is given by

fωi (ω,T) ∶= J−1
i (−S (ω)Jiω +T) . (3.4.13)

Definition 3.4.1. Two unit vectors (n1,n2) ∈ (S2)2 are diametrically opposed if
nT1 n2 = −1, and synchronized if nT1 n2 = 1. A group of unit vectors (n1,⋯,nN) ∈ (S2)N
is synchronized if nTi nj = 1 for all i, j ∈ {1,⋯,N}.

Problem 3.4.2. Given a group of rotation matrices (R1,⋯,RN) ∶ R≥0 ↦ SO(3)N ,
with angular velocities (ω1,⋯,ωN) ∶ R≥0 ↦ R3 and moments of inertia J1,⋯, JN
satisfying (3.4.7) and (3.4.11), design distributed control laws for the torques {Ti ∶
R≥0 ↦ R3}i∈N , in the absence of a common inertial orientation frame, that guarantee
that the group of unit vectors (n1,⋯,nN) ∶= (R1n̄1,⋯,RN n̄N) ∶ R≥0 ↦ (S2)N is
asymptotically synchronized.

For the purposes of analysis, we consider the state x and the control input
T, as introduced in (3.4.5) and (3.4.6), respectively. Then, a trajectory of system
x ∶ R≥0 ↦ Ωx evolves according to ẋ(t) = fx(x(t),T(t)) where

fx(x,T) ∶= (FR(R,ω),Fω(ω,T)) ∈ (R3×3)3 ×R3N , (3.4.14)

with

FR(R,ω) ∶= (fR(R1,ω1),⋯, fR(RN ,ωN)) ∈ (R3×3)N , (3.4.15)
Fω(ω,T) ∶= (fω1(ω1,T1),⋯, fωN (ωN ,TN)) ∈ (R3)N , (3.4.16)

3.4. Controllers for attitude synchronization on the sphere 101

where we have made of use of the notation (3.4.1)–(3.4.4). We also denote, for
convenience,

Fn(R,ω, n̄) ∶= (fn(R1,ω1, n̄1),⋯, fn(RN ,ωN , n̄N)) ∈ (R3)N . (3.4.17)

3.4.4 Proposed Solution

Preliminaries

Refer the reader to the subsection on graph theory on Section 3.2.
Denote by C ⊆ {1,⋯,M} the set of indices corresponding the edges that form

a cycle. Consider a network with n ∈ N cycles, {Ci}i={1,⋯,n}. A cycle Ci is said to
be independent if Ci ∩Cj = ∅ for all j ∈ {1,⋯, n}/{i}. In Fig. 3.14a, a graph with
two independent cycles is presented. Additionally, we say two cycles C1 and C2

share only one edge when ∣C1 ∩C2∣ = 1 and C1 ∪C2 contains edges from only the
following three cycles (in {Ci}i={1,⋯,n}): C1, C2 and C3 = C1 ∪ C2/{C1 ∩ C2}, with
∣C3∣ = ∣C1∣ + ∣C2∣ − 2. Figures 3.14b and 3.18c present graphs with two cycles that
share only one edge.

Proposition 3.4.3. Consider a graph G with m independent cycles, {Ci}i={1,⋯,m}.
Then the null space of B is given by N (B) = {e = (e1,⋯, eM) ∈ RM ∶ ek = ±el,∀k, l ∈
Ci, i = {1,⋯,m}}; and the null space of B ⊗ In is given by N (B ⊗ In) = {e =
(e1,⋯,eM) ∈ (Rn)M ∶ ek = ±el,∀k, l ∈ Ci, i = {1,⋯,m}}.

Notice that, for an incidence matrix B ∈ RN×M , there are M edges and these
belong to R. On the other hand, for the incidence matrix B ⊗ In (with B ∈ RN×M),
there are M edges, but, since the agents operate in an n-dimensional space, those
edges belong to Rn. With that in mind, under the conditions of Proposition 3.4.3,
N (B) = {e = (e1,⋯, eM) ∈ RM ∶ ek = ±el,∀k, l ∈ Ci, i = {1,⋯,m}} means that N (B)
is the space where all edges of an independent cycle have the same absolute value.
On the other hand, N (B ⊗ In) = {e = (e1,⋯,eM) ∈ (Rn)M ∶ ek = ±el,∀k, l ∈ Ci, i =
{1,⋯,m}} means that N (B ⊗ In) is the space where all edges of an independent
cycle have the same direction and norm (or are all zero).

Proposition 3.4.4. Consider a graph G with n1 independent cycles, {Ci}i={1,⋯,n1},
and n2 pairs of cycles that share only one edge, {(C1

i ,C
2
i)}i={1,⋯,n2}. Then the null

space of B is given by N (B) = {e = (e1,⋯, eM) ∈ RM ∶ ek = ±el,∀k, l ∈ Ci, i =
{1,⋯, n1}} ∪ {e = (e1,⋯, eM) ∈ RM ∶ ek = ±el,∀k, l ∈ C1

i /{C1
i ∩ C2

i }, ep = ±eq,∀p, q ∈
C2
i /{C1

i ∩C2
i }, i = {1,⋯, n2}}; and the null space of B ⊗ In is given by N (B ⊗ In) =

{e = (e1,⋯,eM) ∈ (Rn)M ∶ ek = ±el,∀k, l ∈ Ci, i = {1,⋯, n1}} ∪ {e = (e1,⋯,eM) ∈
(Rn)M ∶ ek = ±el,∀k, l ∈ C1

i /{C1
i ∩C2

i },ep = ±eq,∀p, q ∈ C2
i /{C1

i ∩C2
i }, i = {1,⋯, n2}}.

The results of Proposition 3.4.4 can be interpreted as follows: N (B) is the space
where, for each cycle, all its edges (∈ R), except the one that is shared, have the

102 Attitude Synchronization

n1

n2

n3

n4

n5

κ̄(1,2) = 1κ̄(1,4) = 4κ̄(2,3) = 2

κ̄(1,3) = 3

κ̄(4,5) = 6

κ̄(1,5) = 5

(a)

n1

n2

n3

n4

n5

n6

κ̄(1,2) = 1κ̄(1,4) = 4

κ̄(1,6) = 7

κ̄(2,3) = 2

κ̄(1,3) = 3

κ̄(4,5) = 6

κ̄(1,5) = 5

κ̄(3,6) = 8

(b)
Figure 3.14: Two graphs: (a) graph with two independent cycles; (b) graph with one
independent cycle and two cycles that share only one edge.

same absolute value; while N (B⊗In) is the space where, for each cycle, all its edges
(∈ Rn), except the one that is shared, have the same direction and norm (or are all
zero). Examples 3.4.1 and 3.4.2 illustrate Propositions 3.4.3 and 3.4.4. Proofs of
Propositions 3.4.3 and 3.4.4 are found in Appendix [115]. These Propositions are
useful in a later section, where we prove that for network graphs that satisfy the
conditions of either Proposition, the agents converge to a configuration where all
unit vectors belong to a common plane.

Example 3.4.1. Figure 3.14a displays a graph with two independent cycles,
with incidence matrix and its null space in (3.4.18).

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 0
−1 1 0 0 0 0

0 −1 −1 0 0 0
0 0 0 −1 0 1
0 0 0 0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, N (B1) = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.4.18)

Example 3.4.2. Figure 3.14b displays a graph with one independent cycle and
two cycles that share only one edge, with incidence matrix and its null space
in (3.4.19) (B1 defined in (3.4.18)).

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

1 0
0 0
0 1
0 0
0 0

0 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, N (B) = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

−1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0
−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
−1

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.4.19)

Once again, we refer the reader to the definition of cone, namely Definition 1.3.3,
and Proposition 1.3.4.

Definition 3.4.5. Let α ∈ [0, π] and n = (n1,⋯,nN) ∈ (S2)N . We say that n ∈
C(α)[C̄(α)], if n ∈ (C(α,ν))N[(C̄(α,ν))N], for some and ν ∈ S2.

3.4. Controllers for attitude synchronization on the sphere 103

Proposition 3.4.6. If n ∈ C(α), for some α ∈ [0, π2], then max(i,j)∈N2(1 − nTi nj) <
1 − cos(2α).

This proposition follows immediately after Proposition 1.3.4.

Proposition 3.4.7. If, given n = (n1,⋯,nN) ∈ (S2)N , max(i,j)∈N2(1 − nTi nj) ≤
1 − cos(2

3α) holds for some α ∈ [0, π], then n ∈ C̄(α).

A proof of Proposition 3.4.7 is found in [116].

Distance in S2

Consider an arbitrary distance function between unit vectors d ∶ S2 × S2 → R+
0 ,

satisfying d(n1,n2) = 0⇔ n1 = n2. We say that d ∈ D, if, for all (n1,n2) ∈ S2 ×S2, it
satisfies the partial differential equation

S (n1)∂nd(n,n2)∣n=n1 + S (n2)∂nd(n1,n)∣n=n2 = 0. (3.4.20)

Let us motivate the introduction of (3.4.20). Given d ∈ D, it follows that (3.4.14),

∂nd(n,n2)∣n=n1fn(R1,ω1, n̄2) + ∂nd(n1,n)∣n=n2fn(R2,ω2, n̄2) = (3.4.21)
(3.4.9) = ωT1RT

1 S (n1)∂nd(n,n2)∣n=n1 +ω
T

2RT

2 S (n2)∂nd(n1,n)∣n=n2 (3.4.22)

(3.4.20) =
⎡⎢⎢⎢⎣
ω1

ω2

⎤⎥⎥⎥⎦

T ⎡⎢⎢⎢⎣
RT

1 0
0 RT

2

⎤⎥⎥⎥⎦
⎛
⎝
⎡⎢⎢⎢⎣

1
−1

⎤⎥⎥⎥⎦
⊗ I

⎞
⎠
S (n1)∂nd(n,n2)∣n=n1 . (3.4.23)

where we identify an incidence matrix [1 − 1]T corresponding to an edge between
unit vectors n1 ∶=R1n̄1 and n2 ∶=R2n̄2. For reasons that will become apparent later,
we restrict the previous functions fk(⋅) to satisfy some more properties.

Definition 3.4.8. Consider a function f ∈ C2((0,2),R>0), satisfying i) f ′(s) >
0∀s ∈ (0,2), ii) lims→0+ f(s) = 0, and iii) lim sups→0+ f

′(s), f ′′(s) < ∞. Denote
f2 ∶= lims→2− f(s) and f ′0 ∶= lims→0+ f

′(s). We say

• f ∈ P0 if f ′0 = 0 and f ∈ P0̄ if f ′0 ≠ 0,

• f ∈ P∞ if f2 =∞, and f ∈ P∞̄ if f2 <∞,

• f ∈ P0 if f ∈ P∞̄ ∧ lims→2− f
′(s)

√
2 − s = 0,

• f ∈ P 0̄ if f ∈ P∞̄ ∧ lims→2− f
′(s)

√
2 − s ≠ 0,

• f ∈ P̄ if f(⋅) is of any of the previous classes.

Figure 3.16 illustrates the different classes introduced in Definition 3.4.8 while
Fig. 3.15 illustrates how the properties that f(⋅) satisfies affects the classes it belongs
to. In [75], the notion of reshaping function is introduced, whose definition is within
the same spirit as that of Definition 3.4.8.

104 Attitude Synchronization

lim
s!2−

f(s) = 1

lim
s!2−

f(s) 2 R≥0 lim sup
s!2−

f 0(s) 2 R≥0

lim sup
s!2−

f 0(s) = 1

lim
s!2−

f 0(s)
p
2 � s = 0

lim
s!2−

f 0(s)
p
2 � s 6= 0

f 2 P0

f 2 P 0̄

f 2 P1̄

f 2 P1

Figure 3.15: Relation between properties of function f and the classes it belongs to.

0 1 2

min = 0

↑ ∞

f ∈ P0
and f ∈ P0̄

f ∈ P 0̄
and f ∈ P∞̄

and f ∈ P0̄

f ∈ P∞
and f ∈ P0̄

f ∈ P0
and f ∈ P0

Figure 3.16: Four functions belonging to different classes as introduced in Def-
inition 3.4.8: (from top to bottom in legend) f(s) = s, f(s) = π−2 arccos2

(1 − s),
f(s) = tan2

(0.5 arccos(1 − s)) and f(s) = 0.25(
√
s(2 − s)(s − 1) + arccos(1 − s)).

It can be verified that distance functions of the type

d(n1,n2) = f(1 − nT1 n2), f ∈ C1((0,2),R≥0) (3.4.24)

are the only type of functions for which d ∈ D. In [115], f is further restricted to be
of class P̄ (note that f ∈ P̄ ⇒ f ∈ C1((0,2),R≥0)). Here, however, and for simplicity,
we make a further restriction and assume that f(s) = γs for some γ > 0, and we
refer the interested reader to [114, 115], where the each edge may have a different
distance function (i.e., to each edge k ∈M on the network, we associate a distance
function dk(n1,n2) = fk(1 − nT1 n2), where fk ∈ P̄).

Motivated by (3.4.23), let us define two functions. Define then e ∶ S2 × S2 ↦ R3

as

e(n1,n2) = S (n1)
∂d(n1,n2)

∂n1

= kS (n1)n2, (3.4.25)

to be the error of edge k, and for each k ∈M,. Define also E ∶ (S2)N ∋ n ↦ E(n) ∈ R3N

as

E(n) = (e(1n, 1̄n),⋯,e(Mn, M̄n)), (3.4.26)

(notation used described in Section 3.2.3, page 75). Define, also, D ∶ (S2)N ∋ n ↦
D(n) ∈ R≥0 as

D(n) =∑k=M

k=1
dk(kn, k̄n) = γ∑k=M

k=1
(1 − knT k̄n), (3.4.27)

3.4. Controllers for attitude synchronization on the sphere 105

named, hereafter, total distance function in the network of unit vectors. Note that
D(n) = 0⇔ ∃n⋆ ∈ S2 ∶ n = (1N ⊗ n⋆), which means Problem 3.4.2 is solved, if along
a trajectory x(⋅) of (3.4.14), limt→∞D(n(t)) = 0. It follows from (3.4.23) that, if
dk ∈ D for all k ∈M, then (consider notation (3.4.1)-(3.4.4))

dD(n)Fn(R,ω, n̄) (3.4.17),(3.4.23)= ωT (R1 ⊕⋯RN)(B ⊗ I)e(n). (3.4.28)

Notice that (3.4.28) follows from (3.4.20), which is the reason for imposing such
condition. For convenience, denote

dmin ∶= max
n1,n2∈S

2
d(1 − nT1 n2) = max

s∈[0,2]
f(s) = 2γ, (3.4.29)

which plays an important role in this and the following sections.

Proposition 3.4.9. Given (3.4.25) and (3.4.27), it holds that (let n = (n1,⋯,nN) ∈
(S2)N

D(n) < dmin ⇔ max
(i,j)∈E

nTi ni > −1, (3.4.30)

max
n∈(S2)N

∥E(n)∥ <∞. (3.4.31)

Proof. The fist inequality follows from the definition ofD in (3.4.27) (and from (3.4.29)).
The latter inequality holds, since the set (S2)N is compact and the function e is
continuous in (S2)N ,

Solution to Problem 3.4.2

In this section, we present the controllers for the torques of each agent. For each
agent i ∈ N , we design a controller that is a function of ∣Ni∣ + 1 measurements: ∣Ni∣
measurements corresponding to the distance measurements between agent i and
its ∣Ni∣ neighbors, and 1 measurement corresponding to the body frame angular
velocity. More specifically, at the state x ∈ Ωx, we assume each agent i measures
hi(x), where hi ∶ Ωx ∋ x ↦ hi(x) ∈ (S2)∣Ni ∣ ×R3 is given by

hi(x) ∶= (RT

i Rj1 n̄j,⋯,R
T

i Rj∣Ni ∣
n̄j,ωi), (3.4.32)

where we used the notation Ni = {i1,⋯, i∣Ni ∣}. Physically, this means that agent i
knows n̄j (the constant unit vector that it is required to synchronize with), and
that it can measure the projection of this unit vector on its orientation frame; each
agent i must also measure ωi ∈ R3, which does not require an inertial reference
frame. We then propose, for each agent i ∈ N , the following decentralized output
feedback control law Th

i ∶ (S2)∣Ni ∣ ×R3 ∋ (hi,1,⋯,hi,∣Ni ∣,hi,∣Ni ∣+1) = hi ↦ Tcl

i (hi) ∈ R3

defined as

Tcl

i (hi) ∶= −σ(hi,∣Ni ∣+1) −∑
l=∣Ni ∣

l=1
e (n̄i,hi,l) , (3.4.33)

106 Attitude Synchronization

with σ(x) = k σx√
σ2+xTx

(for some k, σ > 0). We can then also write the control
law Tcl

i ∶ Ωx ∋ x ↦ Tcl

i (x) ∈ R3 as the composition of (3.4.33) with the output
function (3.4.32), i.e.,

Tcl

i (x) ∶= Th

i (hi(x)) = −σ(ωi) −∑
l=∣Ni ∣

l=1
eκ(i,il) (n̄i,R

T

i nil) . (3.4.34)

The controller function in (3.4.34) is decentralized since it depends on the output
function (3.4.32) which is not surjective, and thus the complete state (at a particular
time instant) of the system cannot be reconstructed from one single measurement.
Also, (3.4.34) can be implemented without the knowledge of an inertial reference:
in (3.4.32) measuring RT

i Ril
n̄il for all l ∈ {1,⋯, ∣Ni∣} only requires the measurement

of the projection of n̄il in agent’s i body orientation frame; while ωi is also measured
in agent’s i body orientation frame. Moreover the proposed control law in (3.4.34)
may also be implement with limited actuation, since

∥Tcl

i (⋅)∥ ≤ kσ + ∣Ni∣γ, for each i ∈ N . (3.4.35)

We can now present the complete control law Tcl ∶ Ωx ∋ x ↦ Tcl(x) ∈ R3N , (see
Notation in Section 1.3, 8, for ⊕)

Tcl(x) ∶= (Tcl

1 (x),⋯,Tcl

N(x)) (3.4.36)
= −(σ(ω1),⋯,σ(ωN)) − (R1 ⊕⋯⊕RN)T (B ⊗ I)e(n). (3.4.37)

Constrained Torque

A natural constraint in a physical system is to require the torque provided by
agent i ∈ N to be orthogonal to n̄i. In satellites, thrusters that provide torque along
n̄i might be unavailable; also, controlling the space orthogonal to n̄i can be left as an
additional degree of freedom, in order to accomplish some other control objectives.
However, the control laws proposed in (3.4.34) require full torque actuation, in
particular, (3.4.34) requires each agent to provide torque on the plane orthogonal to
n̄i. Indeed, since nT1 e(n1, ⋅) = 0, ∀n1 ∈ S2 (see (3.4.25)), it follows that, for all i ∈ N ,

n̄Ti Tcl

i (x) = n̄Ti σ(ωi), (3.4.38)

which is not necessarily 0 (with x as in (3.4.5)). In short, previously, we provided
control laws Tcl

i ∶ Ωx ↦ R3 which require full torque by each agent i ∈ N , and in
this section we provide constrained control laws T̄cl

i ∶ Ωx ↦ {z ∈ R3 ∶ zT n̄i = 0},
i.e., control laws which do not require torque along n̄i. Let us anticipate a future
result by announcing that the constrained control law can only be used by agent
i ∈ N when the unit vector to be synchronized by agent i ∈ N , namely n̄i, is a
principal axis of that agent (i.e., when n̄i is an eigenvector of Ji). Consider then
T̄cl

i ∶ Ωx ∋ x ↦ T̄cl

i (x) ∈ {z ∈ R3 ∶ zT n̄i = 0} defined as (x as in (3.4.5))

T̄cl

i (x) = Π (n̄i)Tcl

i (x) (3.4.34)= −σ(Π (n̄i)ωi) −∑
l=∣Ni ∣

l=1
e (n̄i,RT

i nil) . (3.4.39)

3.4. Controllers for attitude synchronization on the sphere 107

Additionally, consider a partition of N , i.e., L̄ ∪ L = N with L̄ ∩ L = ∅; where L̄
is a subset (possibly empty) of the agents whose unit vector to synchronize is an
eigenvector of their moment of inertia, i.e.,

L̄ ⊆ {i ∈ N ∶ ∃λi s.t.Jin̄i = λin̄i}. (3.4.40)

Then we propose the complete control law T̄cl ∶ Ωx ↦ R3N defined as
⎧⎪⎪⎨⎪⎪⎩

(ei ⊗ 13)T T̄cl(x) ∶= T̄cl

i (x) ∀i ∈ L̄,
(ei ⊗ 13)T T̄cl(x) ∶= Tcl

i (x) ∀i ∈ L,
(3.4.41)

i.e., for agents whose unit vector to synchronize is a principal axis, either control
law (3.4.34) or (3.4.39) is chosen, and, for all other agents, control law (3.4.34) is
chosen. As such, agents whose unit vector to synchronize is a principal axis have
an option between using full torque control or constrained torque control. The
disadvantage with the control law in (3.4.39) is that, along a trajectory of the
closed-loop system, and for all i ∈ L̄, limt→∞ n̄Ti ωi(t) is not guaranteed to exist and
be 0; i.e., an agent that opts for (3.4.39) can asymptotically spin, with non-zero
angular velocity, around n̄i (nonetheless, we can guarantee that supt≥0 ∥ωi(t)∥ <
∞⇒ supt≥0 ∣n̄Ti ωi(t)∣ <∞, i.e., if an agent applies (3.4.39) it never spins infinitely
fast around its principal axis n̄i).

For the remainder of this paper, we dedicate efforts in studying the equilibria
configurations induced by this control law (for different types of graphs), their
stability, and what is the effect of the chosen distance functions.

Lyapunov Function

In addition to the total distance function of the network (3.4.27), let us also define
the total rotational kinetic energy of the network

H ∶ R3N ∋ (ω1,⋯,ωN) = ω ↦H(ω) = 1
2∑

i=N

i=1
ωTi Jiωi ∈ R≥0 (3.4.42)

which satisfies

dH(ω)Fω(ω,T) (3.4.16)= ∑i=N

i=1
ωTi Jifωi(ωi,Ti)

(3.4.13)= ∑i=N

i=1
ωTi Ti = ωTT (3.4.43)

where we used the notation (3.4.1)–(3.4.6). Combining (3.4.27) and (3.4.42), consider
then the Lyapunov function (next, we use the notation in (3.4.1)–(3.4.4))

V ∶ Ωx ∋ x ↦ V (x) =D(n) +H(ω) ∈ R≥0, (3.4.44)

and the function W ∶ R3N ∈ ω ↦W (ω) ∈ R≥0 defined as

W (ω) ∶= − dV (x)fx(x, T̄cl(x))(∀n ∈ (S2)N)
(3.4.28) = −ωT (R1 ⊕⋯⊕RN)T (B ⊗ I)e(n) −ωT T̄cl(x)
(3.4.37) =∑

i∈L
ωTi σ(ωi) +∑j∈L̄

ωTj Π (n̄j)σ(ωj). (3.4.45)

108 Attitude Synchronization

Finally, denote (x as in (3.4.5))

Γ ∶={x ∈ Ωx ∶W (ω) = 0}
(3.4.45)={x ∈ Ωx ∶ ωi = 0, i ∈ L,Π (n̄j)ωj = 0, j ∈ L̄}

={x ∈ Ωx ∶ ωi = 0, i ∈ L,ωj = n̄j(n̄Tj ωj), j ∈ L̄} (3.4.46)

In what follows, let x ∈ Γ. It then follows that for i ∈ L

fn(Ri,ωi, n̄i)
(3.4.46)= fn(Ri,0, n̄i)

(3.4.9)= 0, (3.4.47)

and for i ∈ L̄

fn(Ri,ωi, n̄i)
(3.4.46)= fn(Ri, n̄i(n̄Ti ωi), n̄i)

(3.4.9)= (n̄Ti ωi)S (Rin̄i)Rin̄i = 0. (3.4.48)

Moreover, for x ∈ Γ, it also follows that T̄cl

i (x) = ∑l=∣Ni ∣l=1 e (n̄i,RT

i nil), for every i ∈ N,
and that

0 = Fω(x, T̄cl(x)) ∶= (fω1(ω1, T̄cl

1 (x)),⋯, fωN (ωN , T̄cl

N(x)))
(3.4.13)⇔0 = −S (ωi)Jiωi +∑

l=∣Ni ∣

l=1
e (n̄i,RT

i nil)
(3.4.46)⇔0 =∑l=∣Ni ∣

l=1
e (n̄i,RT

i nil) ,∀i ∈ L ∧
0 =∑l=∣Ni ∣

l=1
e (n̄i,RT

i nil) − (n̄Tj ωj)2S (n̄j)Jin̄j,∀i ∈ L̄
(3.4.40)⇔0 =∑l=∣Ni ∣

l=1
e (n̄i,RT

i nil) ,∀i ∈ N
⇔0 = (B ⊗ I)E(x). (3.4.49)

As such, it follows that the largest invariant set contained in (3.4.46) is a subset
of {x ∈ Ωx ∶ (B ⊗ I)E(n) = 0}. We see later that, for specific types of graphs, only
planar equilibria are contained in the previous set.

Proposition 3.4.10. Consider the vector field (3.4.14), the control law (3.4.41), and
a trajectory x(⋅) of ẋ(t) = fx(t,x(t), T̄cl(t,x(t))). Then limt→∞(B ⊗ I)E(n(t)) =
0, limt→∞ωi(t) = 0 for i ∈ L and limt→∞ Π (n̄j)ωj(t) = 0 for j ∈ L̄. Moreover,
supt≥0 ∣n̄Tj ωj(t)∣ <∞ for j ∈ L̄.

For the first part of the proof it suffices to apply the LaSalle’s invariance principle.
For the final part, since H(ω(t)) ≤ V (x(t)) ≤ V (x(0)), for all t ≥ 0, it follows that
supt≥0 ∣n̄Tj ωj(t)∣ <∞.

Denote f clx (t,x) ∶= fx(t,x, T̄cl(t,x)) as the closed-loop vector field. Note then that
Ωeq
x = {x ∈ Ωx ∶ ∀t ≥ 0, f clx (t,x) = 0} provides the set of all equilibrium points, and

moreover {x ∈ Ωx ∶ (B ⊗ I)e(n) = 0,ωi = 0 for i ∈ L,Π (n̄j)ωj = 0 for j ∈ L̄} ⊆ Ωeq
x .

As such, Propositions 3.4.10 imply that, under the Proposition’s conditions, a
trajectory x(⋅) converges to the set of equilibrium points (not all points in that
set are stable though). Note also then that all configurations where all agents are
synchronized are equilibrium configurations (agents are synchronized and not moving

3.4. Controllers for attitude synchronization on the sphere 109

for i ∈ L, and agents are synchronized and spinning around their principal axis for
i ∈ L̄). Finally, notice that since e(Sn) = e(n) for all S ∈ {IN ⊗R ∈ R3N×3N ∶ R ∈
SO(3)} and for all n ∈ (S2)N , it follows that Ωeq

x has geometric isomerism [83]; this
means that for every equilibrium configuration, there exits infinite other equilibria
configurations which are the same up to a rotation. In Subsection 3.4.5, for tree
graphs, we show that Ωeq

x is composed of configurations where agents are either
synchronized or diametrically opposed; while in Section 3.4.6, for graphs discussed
in Propositions 3.4.3 and 3.4.4, we show that Ωeq

x is composed of configurations
where agents belong to a common plane.

Remark 3.4.11. Consider the closed-loop vector field f clx (x) = fx(x, T̄cl(x)). Addi-
tionally, consider the alternative state (denote, for convenience R(t) =R1(t)⊕⋯⊕
RN ∈ SO(3)⊕⋯⊕ SO(3))

x̃(t) = (I3N ⊕R(t))x(t)⇔ x(t) = (I3N ⊕RT (t))x̃(t) (3.4.50)

which evolves according to

˙̃x(t) =(0⊕ Ṙ(t))x(t) + (I3N ⊕R(t))f clx (x(t))∣x(t)=(I3N⊕RT (t))x̃(t) (3.4.51)
=(I3N ⊕R(t))f clx ((I3N ⊕RT (t))x̃(t)) =∶ f clx̃ (x̃(t)) (3.4.52)

The difference between x̃(⋅) and x(⋅) is that all quantities in x̃(⋅) are expressed
in the inertial reference frame, while in x(⋅) the angular velocities are expressed
in the body reference frame of each agent. If Ji = jiI for all i ∈ N , then for any
S ∈ {R⊗ I2N ∈ R6N×6N ∶R ∈ SO(3)}, it can be verified that f clx̃ (Sx̃) = Sf clx̃ (x̃), which
implies that the closed-loop dynamics of the agents are invariant to rotations; i.e.,
given two initial conditions x̃1(0) and x̃2(0) satisfying x̃1(0) = Sx̃2(0), it follows
that x̃1(t) = Sx̃2(t) for all t ≥ 0. This is the case, because when Ji = jiI, then (3.4.13)
reduces to a second order integrator. A similar result has been reported in [83], where
the agents are mass points (i.e., agents without moment of inertia). However, in our
framework, where in general Ji ≠ jiI for some i ∈ N , invariance of the closed-loop
dynamics to rotations does not hold due to the term S (ωi)Jiωi in (3.4.13).

3.4.5 Tree Graphs
Let us focus first on static tree graphs. For these graphs, Proposition 3.2.1 states
that N (B ⊗ I) = {0}. In this section, we quantify the domain of attraction for
synchronization to be asymptotically reached, i.e., we construct a domain Ω0

x such
that if x(0) ∈ Ω0

x, then all trajectories of (3.4.14) under control law (3.4.41) asymp-
totically converge to a configuration where all unit vectors are synchronized. Later,
we construct another Ω0

x, for graphs other than tree graphs, which is smaller in size,
and we quantify how much smaller it is.

Theorem 3.4.12. Consider a static tree graph, the vector field (3.4.14), the control
law (3.4.41), and a trajectory x(⋅) of ẋ(t) = fx(x(t), T̄cl(x(t))). If x(0) ∈ Ω0

x ∶=

110 Attitude Synchronization

{x ∈ Ωx ∶ V (x) < dmin ∶= 2γ} then synchronization is asymptotically reached, i.e.,
limt→∞(ni(t) − nj(t)) = 0, for all (i, j) ∈ N 2.

Proof. Under the Theorem’s conditions, we can invoke Proposition 3.4.10 to conclude
that limt→∞(B⊗I)E(n(t)) = 0 and Proposition 3.4.9 to conclude that two neighbors
are never arbitrarily close to a configuration where they are diametrically opposed.
Since N (B ⊗ I) = {0}, it follows that limt→∞(B ⊗ I)E(n(t))⇒ limt→∞ E(n(t)) = 0.
As such, and since two neighbors are never arbitrarily close to a configuration where
they are diametrically opposed, it follows that all unit vectors converge to one
another.

Corollary 3.4.13. Proposition 3.4.10 holds if r ∶= H(ω(0))
dmin < 1 and if

n(0) ∶= (R1(0)n̄1,⋯,RN(0)n̄N) ∈ C (
1
2

arccos(1 − 21 − r
M

)) . (3.4.53)

Proof. From Proposition 3.4.6, it follows that, under the Corollary conditions,
D(n(0)) ≤ dmin(1−r). Thus, V (x(0)) =D(n(0))+H(ω(0)) ≤ 1−r+H(ω(0)) < dmin,
and the Theorem’s 3.4.12 conditions are satisfied.

Corollary 3.4.13 states that if the total kinetic energy is small, and if all neighbors
are initially contained in a small cone, then synchronization is guaranteed.

If the Theorem’s 3.4.12 conditions are not satisfied (namely if x(0) /∈ Ω0
x),

the group of agents can converge to configurations where one or more pairs of
neighbors are diametrically opposed. However, it does not provide any insight on
whether these equilibrium configurations are stable or unstable. For tree graphs, a
configuration where p pairs of neighbors are diametrically opposed can be shown to
be unstable. For proving this statement, it suffices to find initial conditions which
are arbitrarily close to an equilibrium where p pairs of neighbors are diametrically
opposed, but for which convergence to a configuration where at most p − 1 pairs of
neighbors are diametrically opposed is guaranteed; this reasoning implies that all
configurations where neighbors are diametrically opposed are unstable, and therefore,
only synchronized configurations are stable. A similar result on synchronization
in SO(3) is found in [75], and of synchronization on the sphere is found in [80]. Also,
Theorem 3.4.12 does not provide any insight on whether the limits limt→∞ ni(t) (for
all i ∈ N) exist; i.e, even if the unit vectors synchronize, it is not known whether
those unit vectors converge to a constant unit vector or a time-varying unit vector.
Some preliminaries results are found in cite [116].

3.4.6 Non-Tree Graphs

In this section, we study the equilibria configuration induced by some more general,
yet specific, network graphs. Also, we study the local stability properties of the
synchronized configuration for arbitrary graphs. We first give the following definition.

3.4. Controllers for attitude synchronization on the sphere 111

Definition 3.4.14. Given n vectors x1,⋯,xn ∈ R3, for i ∈ {1,⋯, n}, we say that
x1,⋯,xn belong to a common plane if there exists a unit vector ν ∈ S2 such that
Π (ν)xi = xi for all i ∈ {1,⋯, n}. We say that x1,⋯,xn belong to a common unique
plane if there exists a single pair of unit vectors (+ν,−ν), with ν ∈ S2 such that
Π (ν)xi = xi for all i ∈ {1,⋯, n}

Let us first discuss a property that is exploited later in this section.

Proposition 3.4.15. Consider n1,n2 ∈ S2. If S (n1)n2 ≠ 0, then n1 and n2 belong
a common unique plane.

Proof. Consider ν = S(n1)n2
∥S(n1)n2∥ ∈ S2, which is well defined since S (n1)n2 ≠ 0. It

follows that Π (ν)n1 = n1 and that Π (ν)n2 = n2, which implies that n1 and n2

belong a common plane. Moreover, n1 and n2 belong a common unique plane, since
n1 and n2 span a two dimensional space.

Proposition 3.4.16. Consider n1, . . . , nn ∈ S2, with ∣nTi ni+1∣ ≠ 1 for all i = {1,⋯, n−
1}. If

± S (n1)n2

∥S (n1)n2∥
= ⋯ = ± S (nn−1)nn

∥S (nn−1)nn∥
, (3.4.54)

then all unit vectors belong to a common unique plane.

Proof. Consider n = 3. Since ∣nT1 n2∣ ≠ 1 and ∣nT2 n3∣ ≠ 1, it follows that ∥S (n1)n2∥ ≠ 0
and ∥S (n2)n3∥ ≠ 0. Additionally, by assumption, ± S(n1)n2

∥S(n1)n2∥ = ±
S(n2)n3

∥S(n2)n3∥ , is satisfied.
Consider then ν = S(n1)n2

∥S(n1)n2∥ ∈ S
2. It follows immediately that Π (ν)n1 = n1 and that

Π (ν)n2 = n2. It also follows that Π (ν)n3 = (I − ννT)n3 = n3−ν(νTn3) = n3, where
νTn3 = 0 follows from taking the inner product of (3.4.54) with n3. Altogether, it
follows that n1, n2 and n3 belong to a common unique plane (see Proposition 3.4.15).
For n > 3, it suffices to apply the previous argument n − 2 times.

Proposition 3.4.17. Consider n1, . . . , nn ∈ S2. If ±e(n1,n2) = ⋯ = ±en−1(nn−1,nn)
then all unit vectors belong to a common plane, which is unique if ±e(n1,n2) = ⋯ =
±en−1(nn−1,nn) ≠ 0.

Proof. If ±e(n1,n2) = ⋯ = ±en−1(nn−1,nn) ≠ 0, it suffices to invoke Proposition 3.4.16.
If ±e(n1,n2) = ⋯ = ±en−1(nn−1,nn) = 0, it follows that ±n1 = ⋯ = ±nn, and therefore,
all unit vectors belong to a common plane.

Theorem 3.4.18. Consider the vector field (3.4.14), the control law (3.4.41), and
a trajectory x(⋅) of ẋ(t) = fx(x(t), T̄cl(x(t))). If the network graph contains only
independent cycles, then for each cycle, all its unit vectors converge to a common
plane.

112 Attitude Synchronization

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Ix-Axis
Iy-Axis

I
z-
A
x
is

(a) Triangular configuration.

−1
−0.5

0
0.5

1

−1

0

1
−1

−0.5

0

0.5

1

Ix-AxisIy-Axis

I
z-
A
x
is

(b) Tetrahedron configuration.
Figure 3.17: Equilibrium configurations in a complete graph (K3 in Fig. 3.17a and
K4 in Fig. 3.17b).

Proof. By invoking Proposition 3.4.10, it follows that limt→∞(B ⊗ I)E(n(t)) = 0,
i.e., E(n(⋅)) converges to the null space of B ⊗ I. Now, consider a graph with only
independent cycles and recall Proposition 3.4.3. Without loss of generality, consider
that there is only one independent cycle and that the first n ≥ 3 edges form that
cycle. From Proposition 3.4.3, it follows that E(n) ∈ N (B ⊗ I)⇒ ±e(1n, 1̄n) = ⋯ =
±e(nn, n̄n). In turn, from Proposition 3.4.17, it follows that all unit vectors that
form the cycle belong to a common plane when (B ⊗ I)E(⋅) = 0.

Figure 3.17a exemplifies the statement in Theorem 3.4.18, where three agents
form a complete graph, and thus there is one independent cycle, and where the
distance function is the same for all edges. In this scenario, and because the distance
function is the same for all edges, the unit vectors form an equilateral triangle. In
Fig. 3.17b, four agents form a complete graph, which does not fit the conditions of
Theorem 3.4.18 (a complete graph with fours agents has three cycles, but they all
share edges with each other, i.e., they are not independent); for this scenario, we
can find equilibria configurations where the unit vectors do not belong to a common
plane, and, in Fig. 3.17b, an equilibrium configuration is shown where the four
agents form a tetrahedron.

Theorem 3.4.19. Consider the vector field (3.4.14), the control law (3.4.41), and
a trajectory x(⋅) of ẋ(t) = fx(x(t), T̄cl(x(t))). If the network graph contains only
independent cycles or cycles that share only one edge, then all unit vectors belonging
to each independent cycle converge to a common plane, and all unit vectors belonging
to each pair of cycles that share only one edge also converge to a common plane.

Proof. For network graphs with only independent cycles, the proof follows the same
steps as those in the proof of Theorem 3.4.18. Thus, and w.l.o.g, consider graphs with
only two cycles that share only one edge, and recall Proposition 3.4.4 (adding other
cycles does not affect the following conclusions, as long as those cycles are formed by
other edges other than those that form the two previously mentioned cycles). W.l.o.g,
assume that the first n = q + s− 1 ≥ 5 edges are part of the two cycles that share only

3.4. Controllers for attitude synchronization on the sphere 113

one edge, where the edges {1,⋯, q − 1, q} form the first cycle (∣{1,⋯, q − 1, q}∣ = q),
while the edges {q, q + 1,⋯, n} form the second cycle (∣{q, q + 1,⋯, n}∣ = s), and with
the qth edge as the shared edge between cycles (for brevity, denote p = q − 1 and
r = q + 1). Under the Theorem’s conditions, and by invoking Proposition 3.4.10, it
follows that limt→∞(B ⊗ I)E(n(t)) = 0, i.e., E(n(⋅)) converges to the null space of
B ⊗ I. From Proposition 3.4.4, N (B ⊗ I) is spanned by the vector

[(1̄q−1 ⊗α)T (α +β)T (1̄s−1 ⊗β)T 0T]
T

, (3.4.55)

for any α,β ∈ R3 (see Proposition 3.4.4).
Suppose qn ≠ ±q̄n, where qn and q̄n are the unit vectors that form edge q; then

e(qn, q̄n) ≠ 0 and therefore α +β ≠ 0⇒ α ≠ 0 ∨β ≠ 0; moreover, qn and q̄n form a
common unique plane (see Proposition 3.4.15).

If α = 0 (or β = 0), it follows that ±e(1n, 1̄n) = ⋯ = ±e(pn, p̄n) = 0, and
therefore the unit vectors in the first (or second) cycle belong to a common plane
(Proposition 3.4.17). Also, if α = 0 (or β = 0), it follows that β ≠ 0 (or α ≠ 0),
and therefore ±e(rn, r̄n) = ⋯ = ±e(nn, n̄n) ≠ 0, and therefore all unit vectors in
the second (or first) cycle belong to a common unique plane (Proposition 3.4.17).
However, since the unit vectors of the first (or second) cycle are either all synchronized
or some are diametrically opposed to others, it follows that all unit vectors in both
cycles belong to a common unique plane.

Consider now the case where α ≠ 0 and β ≠ 0, which implies that ±e(1n, 1̄n) =
⋯ = ±e(pn, p̄n) ≠ 0 as well as ±e(rn, r̄n) = ⋯ = ±e(nn, n̄n) ≠ 0. Thus, by Propo-
sition 3.4.17, it follows that all unit vectors in each cycle belong to a common
plane. Since qn and q̄n form a common unique plane, and since qn and q̄n belong
simultaneously to both cycles, it follows that all unit vectors in both cycles belong
to a common unique plane.

Suppose now that qn = ±q̄n. Then e(qn, q̄n) = 0, and it follows that α +β = 0⇒
α = −β ≠ 0 ∨ α = β = 0. If α = β = 0, then E(n) = 0 ⇔ ±n1 = ⋯ = ±nN and the
Theorem’s conclusions follow. If α = −β ≠ 0, then ±e(1n, 1̄n) = ⋯ = ±e(pn, p̄n) =
±e(rn, r̄n) = ⋯ = ±e(nn, n̄n) ≠ 0, which implies that all unit vectors in both cycles
belong to a common unique plane (Proposition 3.4.17).

Figure 3.18 exemplifies the statement in Theorem 3.4.19, with a network of six
agents, with the network graph in Fig. 3.18c. In this scenario, there are two cycles
that share only one edge, one cycle composed of unit vectors {n1,n2,n3,n4,n5}, a
second cycle composed of unit vectors {n1,n5,n6}, and where the shared edge is
formed by {n1,n5}. There are at least two equilibria configurations (apart from
configurations where ni = ±nj for some i and j), which are given in Fig. 3.18a and
Fig. 3.18b, where in both cases all unit vectors belong to a common plane.

Propositions 3.4.18 and 3.4.19 focus on equilibria for some general, yet specific,
network graphs. For arbitrary graphs, we can find equilibria configurations as
exemplified in Fig. 3.17b, where four agents in a complete graph are at equilibrium
when forming a tetrahedron.

114 Attitude Synchronization

Ix-Axis
-1 -0.5 0 0.5 1

I
y
-A

x
is

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n6

n5

n1

π

9

n4

n2

n3

(a) Equilibrium configura-
tion with network graph
shown in Fig. 3.18c.

Ix-Axis
-1 -0.5 0 0.5 1

I
y
-A

x
is

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n6

5π
9

n1

n5

n2

n4

n3

(b) Equilibrium configura-
tion with network graph
shown in Fig. 3.18c.

n1

n2 n3 n4

n5

n6

(c) Graph with two cycles
that share only one edge.

Figure 3.18: Two equilibrium configurations for group with network graph shown in
Fig. 3.18c.

We now present a proposition, which will be useful in guaranteeing local asymp-
totic stability of incomplete attitude synchronization for arbitrary graphs.

Proposition 3.4.20. Consider n ∈ C̄(α), for some α ∈ [0, π2), and assume that i)
the network graph is connected; ii) E(n) ∈ N (B⊗I), with E(⋅) as defined in (3.4.26).
This takes place if and only if ∃ν ∈ S2 ∶ n = (1N ⊗ ν)⇔ n ∈ C̄(0)⇔ α = 0.

Proof. For the sufficiency statement, it follows that, if ∃ν ∈ S2 ∶ n = (1N ⊗ ν),
then all unit vectors are contained in a π

2 -cone, i.e., n ∈ C(π2); and, moreover,
E(1N ⊗ ν) = 0 ⊆ N (B ⊗ I).

For the necessity statement, the proof is as follows. For a tree graph, (B⊗I)E(n) =
0⇔ E(n) = 0 follows. This implies that ni = ±nj for all (i, j) ∈ N ×Ni, but since
n ∈ C(π2), it follows that ni = nj for all (i, j) ∈ N ×Ni. In a connected graph, this
implies that ni = nj for all (i, j) ∈ N ×N , and therefore ∃ν ∈ S2 ∶ n = (1N ⊗ ν).

For an arbitrary graph, the null space of (B ⊗ I) may be more than 0, i.e.,
(B ⊗ I)E(⋅) = 0 /⇒ E(⋅) = 0. We anticipate the final result by stating that if
n ∈ C(π2), then (B ⊗ I)E(n) = 0⇒ E(n) = 0, in which case we conclude again that
∃ν ∈ S2 ∶ n = (1N ⊗ν). Consider then an n ∈ (S2)N , such that (B⊗ I)E(n) = 0. This
means that, for every i ∈ N (Bi∶ stands for the ith row of B),

0 = (Bi∶ ⊗ I)E(n) (3.4.26)= S (ni)∑j∈Ni
(1 − nTi nj)nj. (3.4.56)

Since n ∈ C̄(α), it follows that there exists a unit vector µ ∈ S2, such that µTni ≥
cos(α) > 0 for all i ∈ N . Taking the inner product of (3.4.56) with S (ni)µ, it follows
that µTΠ (ni)∑j∈Ni nj = 0, which can be expanded into

∑j∈Ni
(µTnj − (µTni)nTi nj) = 0. (3.4.57)

Now, consider the set T = {i ∈ N ∶ i = arg maxi∈N (1 −µTni)}, and choose k ∈ T (in
the end, we show that, in fact, T = N). Notice that 0 < cos(α) ≤ µTnk ≤ µTnj for
all k ∈ T and all j ∈ N . As such, it follows from (3.4.57) with i = k that

0 ≤ cos(α)γ∑j∈Nk
(1 − nTknj) ≤ γ∑j∈Nk

(µTnj − (µTnk)nTknj) = 0. (3.4.58)

3.4. Controllers for attitude synchronization on the sphere 115

Notice that the lower bound (on the left side of (3.4.58)) is non-negative and zero if
and only if all neighbors of agent k are synchronized with itself. As such, it follows
from (3.4.58) that all neighbors of agent k are contained in T , i.e., Nk ⊂ T . As such,
the same procedure as before can be followed for the neighbors of agent k, to conclude
that the neighbors of the neighbors of agent k are all synchronized. In a connected
graph, by applying the previous reasoning at most N − 1 times, it follows that all
unit vectors are synchronized, or, equivalently, that ∃ν ∈ S2 ∶ n = (1N ⊗ ν).

Proposition 3.4.20 has the following interpretation. Recall that {x ∈ Ωx ∶ (B ⊗
I)E(n) = 0,ωi = 0 for i ∈ L,Π (n̄j)ωj = 0 for j ∈ L̄} ⊆ Ωeq

x , where Ωeq
x is the set

of equilibrium points. For example, we have seen that, for specific graphs, all
equilibrium configurations are such that all unit vectors belong to a common plane
(see Theorems 3.4.18 and 3.4.19), as illustrated in Fig. 3.18. However, if we can
guarantee that along a trajectory x(⋅) of ẋ(t) = fx(x(t), T̄cl(x(t))), ∃α ∈ [0, π2) ∶
n(t) ∈ C̄(α),∀t ≥ 0, i.e., if we can guarantee that all unit vectors remain in an
closed α-cone smaller than an open π

2 -cone, then we can invoke Proposition 3.4.20
to conclude that limt→∞(B ⊗ I)E(n(t)) = 0 ⇒ limt→∞(ni(t) − nj(t)) = 0; i.e., that
convergence of E(n(⋅)) to the null space of B ⊗ I implies synchronization of the
agents.

This motivates us to introduce a distance d⋆ > 0, which will be useful in guaran-
teeing that, along a trajectory x(⋅), ∃α ∈ [0, π2) ∶ n(t) ∈ C̄(α),∀t ≥ 0. Define

d⋆ = γ (1 − cos(π
3

1
N − 1

)) < dmin ∶= 2γ. (3.4.59)

Notice that d⋆ < dmin (since N ≥ 2). As shown next, if D(n(0)) < d⋆

M
(and H(ω(0) =

0), then the network of unit vectors is forever contained in a closed α-cone, for some
α ∈ [0, π2).
Theorem 3.4.21. Consider an arbitrary network graph, the vector field (3.4.14),
the control law (3.4.41), and a trajectory x(⋅) of ẋ(t) = fx(x(t), T̄cl(x(t))). If
x(0) ∈ Ω0

x = {x ∈ Ωx ∶ V (x) < d⋆} then synchronization is asymptotically reached,
i.e., limt→∞(ni(t) − nj(t)) = 0, for all (i, j) ∈ N 2. Moreover, all implications of
Proposition 3.4.10 also follow.

Proof. Since d⋆ < dmin, we can invoke Proposition 3.4.10, and infer that limt→∞(B ⊗
I)E(t) = 0 (as well as all other implications stated in the Proposition). Since
V̇ (x(t)) ≤ 0 for all t ≥ 0, it follows that γ(1 − knT (⋅)k̄n(⋅)) ≤ D(n(⋅)) ≤ V (x(⋅)) ≤
V (0) < d⋆, for all k ∈ M. In turn, this implies that θ(kn(⋅), k̄n(⋅)) ≤ arccos(1 −
f−1
k (d⋆)) < π

3
1

N−1 , for all k ∈ M. Since the angular displacement between any
two unit vectors ni and nj in a connected graph satisfies θ(ni(⋅),nj(⋅)) ≤ (N −
1)maxk∈M θ(kn(⋅), k̄n(⋅)) (see Proposition 1.3.4), it follows that supt≥0 θ(ni(t),nj(t)) <
π
3 between any two unit vectors ni and nj. As such, it follows from Proposition 3.4.7
that n(⋅) ∈ C̄(3

2 supt≥0 θ(ni(t),nj(t))), where 3
2 supt≥0 θ(ni(t),nj(t)) < π

2 . Finally,
we invoke Proposition 3.4.20, which implies that limt→∞(B ⊗ I)E(n(t)) = 0 ⇒
limt→∞(ni(t) − nj(t)) = 0.

116 Attitude Synchronization

Let us provide a corollary to Theorem 3.4.21, with an easier to visualize region
of attraction.

Corollary 3.4.22. Theorem 3.4.21 holds if r ∶= H(ω(0))
dmin < 1 and if

n(0) ∈ C (1
2

arccos(1 − (1 − cos(π
3

1
N − 1

)) 1 − r
M

)) . (3.4.60)

For proving Corollary 3.4.22 it suffices to check that if its conditions are satisfied,
then V (x(0)) < d⋆.

Remark 3.4.23. Comparing Theorems 3.4.12 and 3.4.21, it follows that the region
of attraction in Theorem 3.4.12 is larger than that in Theorem 3.4.21. Loosely speak-
ing, the region of attraction in Theorem 3.4.12 is dmin

d⋆
= 2

1−cos(π3
1

N−1)
= sin−2(π6

1
N−1) >

1 times larger than the region of attraction in Theorem 3.4.21. This difference comes
from the network graph topology, and in fact, a tree network graph provides stronger
results.

3.4.7 Simulations
We now present simulations that illustrate some of the results presented previously.
For the simulations, we have a group of ten agents, whose network graph is that
presented in Fig. 3.19. The moments of inertia were generated by adding a random
symmetric matrix (between −I and I, entry-wise) to the identity matrix. For the
initial conditions, we have chosen ω(0) = 0 and we have randomly generated one
set of 10 rotation matrices. In Fig. 3.20, n̄i = (1,0,0) for i = {1,2,3,4,5} and
n̄i = (1,0,0) for i = {6,7,8,9,10}, and since these are not necessarily principal
axes, we apply the control law (3.4.41), with L̄ = ∅ and L = N . In Fig. 3.21,
n̄i is the principal axis of Ji, with largest eigenvalue, for i = {1,2,3,4,5}, and
n̄i = (1,0,0) for i = {6,7,8,9,10}. Therefore, we apply the control law (3.4.41),
with L̄ = {1,2,3,4,5} and L = {6,7,8,9,10}. For the edge 1, we have chosen
f1(s) = 10 tan2 (0.5 arccos(1 − s)). For the other edges, we have chosen fk(s) = 5s,
for k =M/{1}. Notice that we have chosen a distance function (for edge 1) that grows
unbounded when two unit vectors are diametrically opposed. As such, it follows
that agents 1 and 6 will never be diametrically opposed, under the condition that
they are not initially diametrically opposed. We have also chosen σ(x) = k σxx√

σ2
x+xTx

with k = 10 and σx = 1. As such, for all agents, except 1 and 6, an upper bound on
the norm of their torque is given by σmax + 2 ⋅ 5 = 20. Given these choices, it follows
from Corollary 3.4.22 that if n(0) ∈ C(≈ 1○) then synchronization is guaranteed.
We emphasize, nonetheless, that Corollary 3.4.22 provides conservative conditions
for synchronization to be achieved, and the domain of attraction is in fact larger.
We also emphasize that, for tree graphs, the domain of attraction is considerably
larger: for example, if we removed the edges between agents 1 and 2, and between
agents 6 and 7, we would obtain a tree graph, and Corollary 3.4.13 would read as
n(0) ∈ C(≈ 18○).

3.4. Controllers for attitude synchronization on the sphere 117

n1

n2 n3 n4 n5

n6

n10 n9 n8 n7

κ̄(1,6)=1

Figure 3.19: Graph with 10 agents, where edge 1 is formed by agents 1 and 6

For each simulation, one in Fig. 3.20 the other in Fig. 3.21, we provide one
simulation where the control law is that in (3.4.41) and another where the control
law in (3.4.41) is corrupted by noise; in fact, for each agent i ∈ N , Ti(t) = T̄cl

i (x(t))+
0.1λi(0,0,1), where λi corresponds to the largest eigenvalue of Ji.

The trajectories of the unit vectors for described conditions are presented in
Figs. 3.20a–3.20b and 3.21a–3.21b. Notice that despite not satisfying conditions of
Theorem 3.4.21 (the unit vectors are not always in a π

2 cone), incomplete attitude
synchronization is still achieved. This can be verified in Figs. 3.20c-3.20d and 3.21c-
3.21d, which present the angular error between neighboring agents. In Figs. 3.21a
and 3.21b, the control laws are different between agents 1–5 and 6–10. The former
perform synchronization of principal axes, by applying the constrained control
law (3.4.39); while the later perform synchronization of their first axes, i.e., n̄i =
(1, 0, 0), by applying the control law (3.4.34). In Figs. 3.20d and 3.21d, for which the
control laws were corrupted by noise, perfect synchronization is not asymptotically
achieved. Instead, the unit vectors converge to a configuration where they remain
close to each other (error of ≈ 5○ between neighbors).

118 Attitude Synchronization

-1
Ix-Axis

-0.500.511
Iy-Axis

0
-1

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

I
z-
A
x
is

(a) Trajectories w/o noise.

-1
Ix-Axis

-0.500.511
Iy-Axis

0
-1

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

I
z-
A
x
is

(b) Trajectories with noise.

Time
0 5 10 15 20 25 30

D
eg
re
es

(◦
)

0

20

40

60

80

100

120

140

160

180

(c) Error angle between
neighbors without noise.

Time
0 5 10 15 20 25 30

D
eg
re
es

(◦
)

0

20

40

60

80

100

120

140

160

180

(d) Error angle between
neighbors with noise.

Figure 3.20: Synchronization in network of 10 unit vectors with and without noise,
where blue agents perform synchronization of their first axes (n̄i = (1,0,0)) and black
agents synchronization of their second axes (n̄i = (1,0,0)).

-1
Ix-Axis

-0.500.511
Iy-Axis

0
-1

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

I
z-
A
x
is

(a) Trajectories w/o noise.

-1
Ix-Axis

-0.500.511
Iy-Axis

0
-1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

I
z-
A
x
is

(b) Trajectories with noise.

Time
0 5 10 15 20 25 30

D
eg
re
es

(◦
)

0

20

40

60

80

100

120

140

160

180

(c) Error angle between
neighbors without noise.

Time
0 5 10 15 20 25 30

D
eg
re
es

(◦
)

0

20

40

60

80

100

120

140

160

180

(d) Error angle between
neighbors with noise.

Figure 3.21: Synchronization in network of 10 unit vectors with and without noise,
where blue agents perform synchronization of principal axes and black agents synchro-
nization of their first axes (i.e., n̄i = (1,0,0)).

Chapter 4

Summary and future research directions

This thesis was divided in two main parts, corresponding to Chapters 2 and 3. In the
first, we developed controllers for thrust-propelled systems, while in the second, we
studied synchronization of unit vectors and of rotation matrices. The main concept
of each chapter is illustrated in Fig. 1.2, in page 3.

In Chapter 2 we explored the idea of using a common controller to accomplish
different trajectory tracking goals in different physical systems, a concept illustrated
in Fig. 2.1, in page 13.

In Section 2.2, we described the abstract concept of a thrust propelled system
and proposed a controller that steers the system’s position to the origin, while in
Section 2.3 we exemplified the previous concepts for the quadrotor system.

In Section 2.4, we modeled the slung load system and transformed it into the
thrust propelled form, allowing us to reuse the controller from Section 2.2. For this
system, we also designed a disturbance estimator for a constant unknown thrust
input disturbance. There are interesting research directions left unexplored, such as
the design of disturbance removal techniques for other types of disturbances, like
an unknown load mass or an unknown cable length. Another intriguing research
direction involves the study of the dynamic effects introduced when the cable is not
exactly attached to the quadrotor’s center-of-mass. This introduces an extra layer of
complexity, since the attitude dynamics of the quadrotor need to be considered and
since the cable tension produces a torque on the quadrotor (while such a torque is
inexistent when the cable is attached to the vehicle’s center-of-mass).

In Section 2.5, we proposed a control law for stabilization of a quadrotor-load
system, and provided conditions on the control law’s gains that guarantee exponential
stability of the equilibrium corresponding to a hover condition. The system was
modeled assuming that the quadrotor provides the requested control input with
a delay, and an upper bound on that delay, for which exponential stability of
the equilibrium is preserved, was provided. Experiments for different scenarios
demonstrated and validated the robustness of the proposed control law. A subject
under current investigation, and in the same vein of the previous problem, includes
determining how far a cable can be attached away from the vehicle’s center-of-mass

119

120 Summary and future research directions

before exponential stability of the equilibrium (corresponding to a hover condition)
is lost. This is of importance in practical applications, since the cable is never exactly
attached to the vehicle’s center-of-mass and one must provide a margin of error for
which stability is guaranteed.

In Section 2.6, we modeled the system composed of a quadrotor and a rigid
manipulator, and transformed it into two thrust propelled systems, allowing us once
again to reuse the controller from Section 2.2. For this system, and similarly to as
in Section 2.4, we also designed a disturbance estimator for a constant unknown
thrust input disturbance. Interesting research directions include extending the work
for a manipulator with multiple degrees of freedom (rather than just one), and to
design disturbance removal techniques for other types of disturbances. One may
think that the previous control strategy may be extended to the case where the
manipulator interacts with the environment (say, the manipulator is used to drill a
hole in a wall), but such a case exhibits different dynamics when compared to those
of a manipulator that does not interact with the environment, and therefore the
previous control strategy is not immediately applicable.

Finally, in Section 2.7, we modeled a point mass load and two fully actuated
aerial vehicles connected by cables, and proposed controllers that guarantee that
the load tracks a desired position trajectory. By appropriately choosing the control
law, the quadrotors-load system was decomposed into three decoupled systems.
One subsystem, concerning the position of the load, has the dynamics of a thrust
propelled system, allowing us to leverage the control strategy from Section 2.2. One
of the other subsystems is related to the angle between the cables, with which we can
guarantee that the transporting aerial vehicles do not collide. Future work includes
the design of an attitude control layer when considering the case of vehicles that
are not fully actuated, and to experimentally validate the proposed strategy.

In summary, in Chapter 2 we explored the idea of using a common controller to
accomplish different trajectory tracking goals in different physical systems, and we
exemplified this concept with four different systems described from Section 2.3 to
Section 2.7.

The main concept explored in Chapter 3 was that of synchronization of unit
vectors and rotations matrices.

In Section 3.3, we studied attitude synchronization in S2 and in SO(3), for a
group of agents under connected switching network graphs. We proposed switching
decentralized output feedback control laws for each agent’s angular velocity, which
do not require a common orientation frame among agents. Our main contribution
lied in transforming those two problems into a common framework, where all agents
dynamics are transformed into unit vectors’ dynamics on a sphere of appropriate
dimension. Convergence to a synchronized network was guaranteed for a wide range
of initial conditions. Directions for future work include extending all results to agents
controlled at the torque level, rather than the angular velocity level.

In Section 3.4, we proposed a distributed control strategy that guarantees attitude
synchronization of unit vectors, representing a specific body direction of a rigid
body. The proposed control torque laws depend on distance functions in S2, and we

Summary and future research directions 121

provided conditions on these distance functions that guarantee that a synchronized
network is locally asymptotically stable in an arbitrary connected undirected network
graph. We imposed conditions on the distance functions that guaranteed that these
are invariant to rotation of their arguments, which means that the proposed control
laws can be implemented by each individual rigid body in the absence of a global
common orientation frame, i.e., by using only local information. Additionally, if the
direction to be synchronized is a principal axis of the rigid body, we proposed a
control law that does not require full torque actuation, and, more specifically, it only
requires torque in the plane orthogonal to the principal axis. We also studied the
equilibria configurations that come with certain types of network graphs. Directions
for future work include studying the stability of all equilibria configurations, apart
from the synchronized configuration; to determine whether a synchronized network
converges to a constant unit vector in a fixed, though unknown, orientation frame;
and to extend the results to complete attitude synchronization. For complete attitude
synchronization, though, it is not possible to construct a constrained control law,
since it requires full torque actuation.

Bibliography

[1] Aeroworks aim. http://www.aeroworks2020.eu/. Accessed: September,
2016.

[2] Senstry metane leak detection. http://www.psicorp.com/content/psi
s-rmld%E2%84%A2-sentry-methane-leak-detection-0. Accessed: October,
2016.

[3] Cyberhawk boiler inspection. http://www.thecyberhawk.com/2016/04/
cyberhawk-completes-internal-power-station-boiler-inspection-ea
stern-europe-using-uav/. Accessed: October, 2016.

[4] Gri managing of forest. https://www.gri.msstate.edu/news_events/
news_item.php?d=586. Accessed: October, 2016.

[5] Flirtey drone delivery. http://fortune.com/2016/06/25/flirtey-shi
p-shore-drone-delivery/. Accessed: October, 2016.

[6] W. Lohmiller and J.J. Slotine. On contraction analysis for non-linear systems.
Automatica, 34(6):683–696, 1998.

[7] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling,
estimation, and control of quadrotor. Robotics Automation Magazine, IEEE,
19(3):20–32, Sept 2012.

[8] F. Kendoul. Survey of advances in guidance, navigation, and control of
unmanned rotorcraft systems. Journal of Field Robotics, 29(2):315–378, 2012.

[9] F. Augugliaro, A. Mirjan, F. Gramazio, M. Kohler, and R. D’Andrea. Building
tensile structures with flying machines. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3487–3492. IEEE, 2013.

[10] N. Michael, J. Fink, and V. Kumar. Cooperative manipulation and trans-
portation with aerial robots. Autonomous Robots, 30(1):73–86, 2011.

[11] M. Orsag, C.M. Korpela, S. Bogdan, and P. Oh. Hybrid adaptive control for
aerial manipulation. Journal of intelligent & robotic systems, 73(1-4):693–707,
2014.

123

http://www.aeroworks2020.eu/
http://www.psicorp.com/content/psis-rmld%E2%84%A2-sentry-methane-leak-detection-0
http://www.psicorp.com/content/psis-rmld%E2%84%A2-sentry-methane-leak-detection-0
http://www.thecyberhawk.com/2016/04/cyberhawk-completes-internal-power-station-boiler-inspection-eastern-europe-using-uav/
http://www.thecyberhawk.com/2016/04/cyberhawk-completes-internal-power-station-boiler-inspection-eastern-europe-using-uav/
http://www.thecyberhawk.com/2016/04/cyberhawk-completes-internal-power-station-boiler-inspection-eastern-europe-using-uav/
https://www.gri.msstate.edu/news_events/news_item.php?d=586
https://www.gri.msstate.edu/news_events/news_item.php?d=586
http://fortune.com/2016/06/25/flirtey-ship-shore-drone-delivery/
http://fortune.com/2016/06/25/flirtey-ship-shore-drone-delivery/

124 Bibliography

[12] J. Scholten, M. Fumagalli, S. Stramigioli, and R. Carloni. Interaction control
of an UAV endowed with a manipulator. In IEEE International Conference
on Robotics and Automation (ICRA), pages 4910–4915, May 2013.

[13] H. Lee, H. Kim, and H.J. Kim. Path planning and control of multiple aerial
manipulators for a cooperative transportation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2386–2391, Sept
2015.

[14] T. Lee. Geometric control of multiple quadrotor UAVs transporting a cable-
suspended rigid body. In Conference on Decision and Control, pages 6155–6160.
IEEE, 2014.

[15] P. Pereira, R. Zanella, and D.V. Dimarogonas. Decoupled design of con-
trollers for aerial manipulation with quadrotors. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4849–4855, 2016.

[16] L. D. Minh and C. Ha. Modeling and control of quadrotor MAV using vision-
based measurement. In International Forum on Strategic Technology (IFOST),
pages 70–75, Oct 2010.

[17] D. Scaramuzza and et al. Vision-controlled micro flying robots: From system
design to autonomous navigation and mapping in GPS-denied environments.
Robotics Automation Magazine, IEEE, 21(3):26–40, Sept 2014.

[18] M. Bisgaard, A. la Cour-Harbo, and J. Bendtsen. Full state estimation for
helicopter slung load system. In AIAA Guidance, Navigation and Control
Conference and Exhibit, pages 6762–6774, 2007.

[19] P. Pounds, D.R. Bersak, and A.M. Dollar. Grasping from the air: Hovering
capture and load stability. In IEEE International Conference on Robotics and
Automation, pages 2491–2498, May 2011.

[20] M. Hua, T. Hamel, P. Morin, and C. Samson. Introduction to feedback control
of underactuated VTOL vehicles: A review of basic control design ideas and
principles. Control Systems, 33(1):61–75, 2013.

[21] E. Frazzoli, M. Dahleh, E. Feron, et al. Trajectory tracking control design for
autonomous helicopters using a backstepping algorithm. In American Control
Conference, pages 4102–4107. IEEE, 2000.

[22] P. Cheng, J. Keller, and V. Kumar. Time-optimal UAV trajectory planning
for 3D urban structure coverage. In IROS 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2750–2757, Sept 2008.

[23] M. B. Srikanth, A. Soto, A. Annaswamy, E. Lavretsky, and J.J. Slotine. Con-
trolled manipulation with multiple quadrotors. In AIAA Guidance, Navigation,
and Control Conference, Aug 2011.

Bibliography 125

[24] F. Ruggiero et al. A multilayer control for multirotor UAVs equipped with a
servo robot arm. In International Conference on Robotics and Automation,
pages 4014–4020. IEEE, 2015.

[25] M. Tognon and A. Franchi. Nonlinear observer-based tracking control of link
stress and elevation for a tethered aerial robot using inertial-only measurements.
In IEEE International Conference on Robotics and Automation, pages 3994–
3999, 2015.

[26] M. Bernard and K. Kondak. Generic slung load transportation system using
small size helicopters. In International Conference on Robotics and Automation,
pages 3258–3264. IEEE, 2009.

[27] M. Bisgaard, J. D. Bendtsen, and A. L. Cour-Harbo. Modeling of generic
slung load system. Journal of guidance, control, and dynamics, 32(2):573–585,
2009.

[28] M. Bisgaard, A. Cour-Harbo, E. N. Johnson, and J. D. Bendtsen. Vision aided
state estimator for helicopter slung load system. 17th IFAC Symposiumon
Automatic Control in Aerospace, 2007.

[29] I. Palunko, P. Cruz, and R. Fierro. Agile load transportation: Safe and efficient
load manipulation with aerial robots. IEEE robotics & automation magazine,
19(3):69–79, 2012.

[30] K. Sreenath, N. Michael, and V. Kumar. Trajectory generation and control of
a quadrotor with a cable-suspended load - A differentially-flat hybrid system.
In International Conference on Robotics and Automation, pages 4888–4895.
IEEE, 2013.

[31] É. Servais, H. Mounier, and B. d’Andréa Novel. Trajectory tracking of trirotor
UAV with pendulum load. In 20th International Conference on Methods and
Models in Automation and Robotics (MMAR), pages 517–522, Aug 2015.

[32] T. Lee, K. Sreenath, and V. Kumar. Geometric control of cooperating multiple
quadrotor UAVs with a suspended payload. In Conference on Decision and
Control, pages 5510–5515. IEEE, 2013.

[33] P. Pereira, M. Herzog, and D.V. Dimarogonas. Slung load transportation with
single aerial vehicle and disturbance removal. In Mediterranean Conference
on Control and Automation, pages 671–676, 2016.

[34] S. Dai, T. Lee, and D. S. Bernstein. Adaptive control of a quadrotor UAV
transporting a cable-suspended load with unknown mass. In Conference on
Decision and Control, pages 6149–6154. IEEE, 2014.

126 Bibliography

[35] I. Maza, K. Kondak, M. Bernard, and A. Ollero. Multi-UAV cooperation and
control for load transportation and deployment. Journal of Intelligent and
Robotic Systems, 57(1-4):417–449, 2010.

[36] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar. Design, modeling,
estimation and control for aerial grasping and manipulation. In International
Conference on Intelligent Robots and Systems, pages 2668–2673. IEEE, 2011.

[37] P. Pounds, D. Bersak, and A. Dollar. Grasping from the air: Hovering capture
and load stability. In International Conference on Robotics and Automation,
pages 2491–2498. IEEE, 2011.

[38] J. Thomas, J. Polin, K. Sreenath, and V. Kumar. Avian-inspired grasping
for quadrotor micro UAV’s. In ASME 2013 International Design Engineer-
ing Technical Conferences and Computers and Information in Engineering
Conference. American Society of Mechanical Engineers, 2013.

[39] D. Mellinger, M. Shomin, N. Michael, and V. Kumar. Cooperative grasping
and transport using multiple quadrotors. In Distributed autonomous robotic
systems, pages 545–558. Springer, 2013.

[40] F. Huber et al. First analysis and experiments in aerial manipulation using
fully actuated redundant robot arm. In International Conference on Intelligent
Robots and Systems, pages 3452–3457. IEEE, 2013.

[41] A. Jimenez-Cano, J. Martin, G. Heredia, Ańıbal Ollero, and R. Cano. Control
of an aerial robot with multi-link arm for assembly tasks. In International
Conference on Robotics and Automation, pages 4916–4921. IEEE, 2013.

[42] C. Korpela, M. Orsag, M. Pekala, and P. Oh. Dynamic stability of a mobile
manipulating unmanned aerial vehicle. In International Conference on Robotics
and Automation, pages 4922–4927, 2013.

[43] J. Escareno, G. Flores, M. Rakotondrabe, H. Romero, R. Lozano, and E. Rubio.
Task-based control of a multirotor miniature aerial vehicle having an onboard
manipulator. In International Conference on Unmanned Aircraft Systems,
pages 857–863. IEEE, 2014.

[44] S. Kannan, M. Alma, M. Olivares-Mendez, and H. Voos. Adaptive control of
aerial manipulation vehicle. In International Conference on Control System,
Computing and Engineering, pages 273–278. IEEE, 2014.

[45] G. Antonelli and E. Cataldi. Adaptive control of arm-equipped quadrotors.
Theory and simulations. In Mediterranean Conference of Control and Au-
tomation, pages 1446–1451. IEEE, 2014.

Bibliography 127

[46] Pedro Pereira and Dimos V. Dimarogonas. Lyapunov-based generic controller
design for thrust-propelled underactuated systems. In IEEE European Control
Conference, pages 594–599, Jun 2016.

[47] G. Hoffmann, S. Waslander, and C. Tomlin. Quadrotor helicopter trajectory
tracking control. In AIAA Guidance, Navigation and Control Conference and
Exhibit, pages 1–14, 2008.

[48] J. Koo and S. Sastry. Output tracking control design of a helicopter model
based on approximate linearization. In Conference on Decision and Control,
volume 4, pages 3635–3640. IEEE, 1998.

[49] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The GRASP multiple
micro-UAV testbed. Robotics & Automation Magazine, IEEE, 17(3):56–65,
2010.

[50] P. Casau, R. Sanfelice, R. Cunha, D. Cabecinhas, and C. Silvestre. Global
trajectory tracking for a class of underactuated vehicles. In American Control
Conference, pages 419–424. IEEE, 2013.

[51] A. Roberts and A. Tayebi. Adaptive position tracking of VTOL UAVs. IEEE
Transactions on Robotics, 27(1):129–142, 2011.

[52] F. Mazenc and A. Iggidr. Backstepping with bounded feedbacks. Systems &
control letters, 51(3):235–245, 2004.

[53] I. Palunko, R. Fierro, and P. Cruz. Trajectory generation for swing-free
maneuvers of a quadrotor with suspended payload: A dynamic programming
approach. In IEEE International Conference on Robotics and Automation,
pages 2691–2697, 2012.

[54] P. Pereira, M. Herzog, and D.V. Dimarogonas. Slung load transportation
with single aerial vehicle and disturbance removal. In IEEE Mediterranean
Conference on Control and Automation, pages 671–676, 2016.

[55] Z. Cai, M.S. de Queiroz, and D.M. Dawson. A sufficiently smooth projection
operator. IEEE Transactions on Automatic Control, 51(1):135–139, Jan 2006.

[56] Video of load lifting experiment. https://dl.dropboxusercontent.com/u/
39547631/LoadQuadrotor_v2.mp4. 2016-02-22.

[57] R. C. Nelson. Flight stability and automatic control, volume 2. WCB/McGraw
Hill, 1998.

[58] P. Pereira and D.V. Dimarogonas. Stability of load lifting by a quadrotor
under attitude control delay. In IEEE International Conference on Robotics
and Automation, 2017 (submitted).

https://dl.dropboxusercontent.com/u/39547631/LoadQuadrotor_v2.mp4
https://dl.dropboxusercontent.com/u/39547631/LoadQuadrotor_v2.mp4

128 Bibliography

[59] V. Lippiello and F. Ruggiero. Exploiting redundancy in cartesian impedance
control of UAVs equipped with a robotic arm. In International Conference on
Intelligent Robots and Systems, pages 3768–3773. IEEE, 2012.

[60] J. Acosta, M.I. Sanchez, and A. Ollero. Robust control of underactuated aerial
manipulators via IDA-PBC. In Conference on Decision and Control, pages
673–678. IEEE, 2014.

[61] J. Escareno, M. Rakotondrabe, G. Flores, and R. Lozano. Rotorcraft MAV
having an onboard manipulator: Longitudinal modeling and robust control.
In European Control Conference, pages 3258–3263, 2013.

[62] S. Kim, S. Choi, and H. Kim. Aerial manipulation using a quadrotor with a
two DOF robotic arm. In International Conference on Intelligent Robots and
Systems, pages 4990–4995. IEEE, 2013.

[63] Z. Cai, M.S. de Queiroz, and D.M. Dawson. A sufficiently smooth projection
operator. Transactions on Automatic Control, 51(1):135–139, Jan 2006.

[64] P. Pereira and D.V. Dimarogonas. Control framework for slung load trans-
portation with two aerial vehicles. In American Control Conference, 2017
(submitted).

[65] V. Rao and D. Bernstein. Naive control of the double integrator. Control
Systems Magazine, 21(5):86–97, 2001.

[66] P.O. Pereira and D.V. Dimarogonas. Lyapunov-based generic controller design
for thrust-propelled underactuated systems. In European Control Conference,
pages 594–599, 2016.

[67] J.R. Lawton and R.W. Beard. Synchronized multiple spacecraft rotations.
Automatica, 38(8):1359–1364, 2002.

[68] A. Abdessameud and A. Tayebi. Attitude synchronization of a group of
spacecraft without velocity measurements. IEEE Transactions on Automatic
Control, 54(11):2642–2648, 2009.

[69] N.E. Leonard, D.A. Paley, F. Lekien, R. Sepulchre, D.M. Fratantoni, and R.E.
Davis. Collective motion, sensor networks, and ocean sampling. Proceedings
of the IEEE, 95(1):48–74, Jan 2007.

[70] T. Hatanaka, Y. Igarashi, M. Fujita, and M.W. Spong. Passivity-based pose
synchronization in three dimensions. IEEE Transactions on Automatic Control,
57(2):360–375, 2012.

[71] W. Ren. Distributed attitude consensus among multiple networked spacecraft.
In American Control Conference, pages 1760–1765. IEEE, June 2006.

Bibliography 129

[72] A. Sarlette, R. Sepulchre, and N.E. Leonard. Autonomous rigid body attitude
synchronization. Automatica, 45(2):572–577, 2009.

[73] D.V. Dimarogonas, P. Tsiotras, and K. Kyriakopoulos. Leader–follower coop-
erative attitude control of multiple rigid bodies. Systems & Control Letters,
58(6):429–435, 2009.

[74] H. Bai, M. Arcak, and J.T. Wen. Rigid body attitude coordination without
inertial frame information. Automatica, 44(12):3170–3175, 2008.

[75] R. Tron, B. Afsari, and R. Vidal. Intrinsic consensus on SO(3) with almost-
global convergence. In IEEE Conference on Decision and Control, pages
2052–2058, 2012.

[76] S. Chung, S. Bandyopadhyay, I. Chang, and F. Hadaegh. Phase synchronization
control of complex networks of lagrangian systems on adaptive digraphs.
Automatica, 49(5):1148–1161, 2013.

[77] A.K. Bondhus, K.Y. Pettersen, and J.T. Gravdahl. Leader/follower synchro-
nization of satellite attitude without angular velocity measurements. In IEEE
Conference on Decision and Control and European Control Conference, pages
7270–7277, 2005.

[78] T.R. Krogstad and J.T. Gravdahl. Coordinated attitude control of satellites
in formation. In Group Coordination and Cooperative Control, pages 153–170.
Springer, 2006.

[79] K.K. Oh and H.S. Ahn. Formation control and network localization via
orientation alignment. IEEE Transactions on Automatic Control, 59(2):540–
545, 2014.

[80] R. Olfati-Saber. Swarms on sphere: A programmable swarm with synchronous
behaviors like oscillator networks. In IEEE Conference on Decision and
Control, pages 5060–5066, 2006.

[81] N. Moshtagh and A. Jadbabaie. Distributed geodesic control laws for flocking
of nonholonomic agents. Transactions on Automatic Control, 52(4):681–686,
2007.

[82] D. Paley. Stabilization of collective motion on a sphere. Automatica, 45(1):212–
216, 2009.

[83] W. Li and M.W. Spong. Unified cooperative control of multiple agents on
a sphere for different spherical patterns. IEEE Transactions on Automatic
Control, 59(5):1283–1289, 2014.

[84] A. Sarlette, S. Emre Tuna, V. Blondel, and R. Sepulchre. Global synchro-
nization on the circle. In Proceedings of the 17th IFAC world congress, pages
9045–9050, 2008.

130 Bibliography

[85] A. Sarlette and R. Sepulchre. Synchronization on the circle. arXiv preprint
arXiv:0901.2408, 2009.

[86] F. Dörfler and F. Bullo. Synchronization in complex networks of phase
oscillators: A survey. Automatica, 50(6):1539–1564, 2014.

[87] L. Moreau. Stability of continuous-time distributed consensus algorithms. In
Conference on Decision and Control, volume 4, pages 3998–4003. IEEE, 2004.

[88] L. Moreau. Stability of multiagent systems with time-dependent communica-
tion links. Transactions on Automatic Control, 50(2):169–182, 2005.

[89] H.T. Zhang, C. Zhai, and Z. Chen. A general alignment repulsion algorithm
for flocking of multi-agent systems. IEEE Transactions on Automatic Control,
56(2):430–435, 2011.

[90] P.O. Pereira and D.V. Dimarogonas. Family of controllers for attitude syn-
chronization on the sphere. In Automatica, 2016, to appear.

[91] H. Cai and J. Huang. The leader-following attitude control of multiple rigid
spacecraft systems. Automatica, 50(4):1109–1115, 2014.

[92] S. Nair and N. Leonard. Stable synchronization of rigid body networks.
Networks and Heterogeneous Media, 2(4):597, 2007.

[93] J. Thunberg, W. Song, E. Montijano, Y. Hong, and X. Hu. Distributed attitude
synchronization control of multi-agent systems with switching topologies.
Automatica, 50(3):832–840, 2014.

[94] W. Song, J. Thunberg, X. Hu, and Y. Hong. Distributed high-gain attitude
synchronization using rotation vectors. Journal of Systems Science and
Complexity, 28(2):289–304, 2015.

[95] S. Chung, U. Ahsun, and J.E. Slotine. Application of synchronization to for-
mation flying spacecraft: Lagrangian approach. Journal of Guidance, Control,
and Dynamics, 32(2):512–526, 2009.

[96] C.G. Mayhew, R.G. Sanfelice, J. Sheng, M. Arcak, and A.R. Teel. Quaternion-
based hybrid feedback for robust global attitude synchronization. IEEE
Transactions on Automatic Control, 57(8):2122–2127, Aug 2012.

[97] C.D. Godsil, G. Royle, and C.D. Godsil. Algebraic graph theory, volume 207.
Springer New York, 2001.

[98] D.V. Dimarogonas and K.H. Johansson. Further results on the stability of
distance-based multi-robot formations. In IEEE American Control Conference,
pages 2972–2977, 2009.

Bibliography 131

[99] S. Guattery and G.L. Miller. Graph embeddings and Laplacian eigenvalues.
SIAM Journal on Matrix Analysis and Applications, 21(3):703–723, 2000.

[100] Y. Igarashi, T. Hatanaka, M. Fujita, and M.W. Spong. Passivity-based attitude
synchronization in SE(3). IEEE Transactions on Control Systems Technology,
17(5):1119–1134, 2009.

[101] R. Sepulchre. Consensus on nonlinear spaces. Annual reviews in control,
35(1):56–64, 2011.

[102] A. Sarlette and R. Sepulchre. Consensus optimization on manifolds. SIAM
Journal on Control and Optimization, 48(1):56–76, 2009.

[103] Z. Lin, B. Francis, and M. Maggiore. State agreement for continuous-time
coupled nonlinear systems. SIAM Journal on Control and Optimization,
46(1):288–307, 2007.

[104] J.P. Hespanha. Uniform stability of switched linear systems: extensions of
LaSalle’s invariance principle. IEEE Transactions on Automatic Control,
49(4):470–482, 2004.

[105] A. Bacciotti and L. Mazzi. An invariance principle for nonlinear switched
systems. Systems & Control Letters, 54(11):1109–1119, 2005.

[106] J.L. Mancilla-Aguilar and R.A. Garćıa. An extension of LaSalle’s invariance
principle for switched systems. Systems & Control Letters, 55(5):376–384,
2006.

[107] N. Fischer, R. Kamalapurkar, and W.E. Dixon. LaSalle-Yoshizawa corollaries
for nonsmooth systems. IEEE Transactions on Automatic Control, 9(58):2333–
2338, 2013.

[108] D. Pence. Spacecraft Attitude, Rotations and Quaternions, volume 5.
Birkhäuser, 1984.

[109] P. Pereira, D. Boskos, and D.V. Dimarogonas. A common framework for
attitude synchronization of unit vectors in networks with switching topology.
In 55th IEEE Conference on Decision and Control, 2016 (to appear).

[110] E.D. Sontag. Mathematical Control Theory. Springer, 1998.

[111] P. Pereira, D. Boskos, and D.V. Dimarogonas. A common framework for
attitude synchronization of unit vectors in networks with switching topology.
arXiv, 2015.

[112] C.G. Mayhew, R.G. Sanfelice, and A.R. Teel. On quaternion-based attitude
control and the unwinding phenomenon. In American Control Conference,
pages 299–304. IEEE, 2011.

132 Bibliography

[113] D. Liberzon. Switching in systems and control. Springer, 2003.

[114] P. Pereira and D.V. Dimarogonas. Family of controllers for attitude synchro-
nization in S2. In 54th IEEE Conference on Decision and Control, pages
6761–6766, Dec 2015.

[115] P. Pereira and D.V. Dimarogonas. Family of controllers for attitude synchro-
nization on the sphere. In Automatica, 2016 (to appear).

[116] P. Pereira and D.V. Dimarogonas. Family of controllers for attitude synchro-
nization on the sphere. arXiv, 2016.

	Introduction
	Motivation
	Outline and Contributions
	Notation

	Thrust propelled systems
	Background
	Control of the thrust-propelled system
	Controller for a quadrotor
	Controller for load lifting by a quadrotor
	Load lifting stability under attitude control delay
	Decoupled design of controllers for aerial manipulation
	Controller for load lifting by two quadrotors

	Attitude Synchronization
	Background
	Preliminaries
	A common framework for attitude synchronization
	Controllers for attitude synchronization on the sphere

	Summary and future research directions
	Bibliography

